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A B S T R A C T

The field of object detection has emerged as a critical and valuable research frontier. Nevertheless, the detection 
of transparent objects remains an unresolved and challenging problem, primarily due to their limited texture and 
color information. Towards being able to address this situation, we propose a novel intensity-spectral polari-
zation fusion framework, termed as FuseISP, specifically designed for transparent object discrimination. FuseISP 
starts by utilizing hierarchical feature extractor for each feature source, i.e., trichromatic intensities or trichro-
matic linear polarization cues, to produce abundant high- and low-frequency features. Subsequently, we 
implement an intensity-spectral polarization mixed modulator to enhance interactions between intensity and 
spectral polarization information. Additionally, FuseISP introduces a new hierarchical feature fusion module to 
establish connections among different levels for modelling the shared information. Lastly, a multi-level decoder 
module based on the integration of 2D convolutional neural networks (CNNs) and 3D CNNs, which can simul-
taneously capture inter- and intra-polarization relationships, is designed to construct the transparent object 
detector in a deeply supervised manner. Experimental results show our proposed method outperforms other 
advanced approaches in the real-world scenes.

1. Introduction

With the rise of deep learning (DL) technologies, e.g., CNNs and 
Vision Transformers, significant progress has been made in scene 
parsing including object detection. The existing object detection para-
digm has made remarkable progress, establishing themselves as funda-
mental solutions across various applications, including visual tracking 
[1], robotic navigation [2], and autonomous driving [3,4], and indus-
trial quality inspection [5].

As a subfield of object detection, transparent object detection (TOD) 
still faces greater challenges than traditional object detection tasks 
[6,7]. The transparent objects (TO), e.g., glass guardrails and window 
panes, which are very common in daily life scenes, exhibit the following 
typical characteristics: i) they do not have their own visual appearances; 
ii) they easily confuse the vision systems due to their inherently special 
properties [8,9], which only transmit/reflect the appearances of their 
surroundings; iii) they mostly share an extremely thin separation 
boundary with the background region [10]. As shows in Fig. 1, we 
display two common but challenging scenarios. These challenges are 
particularly acute for the segmentation tasks that support autonomous 

driving and underwater submarine navigation, which have very high 
safety requirements. For addressing this task, TOD has gradually 
received attention and intensive research.

Most of the current TOD solutions, e.g., MirrorNet [11] and EBLNet 
[12], dependent on trichromatic (RGB) textures for feature extraction. 
Nonetheless, the TO is not visible in RGB cameras due to the absence of 
both texture and colour information. This can result in the model’s 
inability to effectively extract key features of the TO from RGB images, 
thereby these methods often fail to distinguish the TO from the 
background.

To remedy this issue, recent noteworthy advancements have 
explored richer modalities especially polarization information for more 
robust identification of TO. Unlike the intensity information used in 
traditional vision systems, the property of polarization provides 
intriguing physical characteristics of light, enabling the extraction of 
distinctive information about an object, e.g., its surface smoothness and 
material composition [13–16]. Fig. 1 illustrates these advantages of 
polarization imaging. Recently, polarization imaging system becomes 
commercially available, spawning a wide array of various applications 
such as polarization scattering imaging [17–23]. A number of 
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polarization-aided TOD (PTOD) studies, e.g., Polarized CNN [8], have 
been carried out, and the results report that PTOD exhibits its distinct 
advantages, especially in strongly jamming environments. These 
methods mainly exploit Deep Convolutional Neural Networks (DCNNs) 
that have powerful feature extraction and feature learning capabilities 
and RGB linear polarization cues, e.g., degree of linear polarization 
(DoLP) and angle of polarization (AoP). For example, a polarization- 
based glass segmentation model i.e., PGSNet [24], is developed using 
RGB intensity, DoLP, and AoP cues extracted from a single image ac-
quired by an RGB polarizing camera as the input for the model.

Nevertheless, these polarization-based approaches still remain a 
huge challenge for reliable TOD due to the following two-fold obstacles. 
Firstly, the utilization of RGB intensity and linear polarization cues al-
lows neural networks to obtain plentiful features. However, a new 
question that deserves asking is how to seamlessly merge the coarse- to 
fine-level features with varying polarization states across different scales 
and depths. Secondly, the joint analysis among 3D polarization charac-
teristics have not been considered effectively, hindering the effective 
modelling for TOD. Additionally, 2D convolutions primarily focus on 
extracting local spatial features (e.g., edge and texture) within a single 
polarization component. In contrast, 3D convolutions operate on volu-
metric polarization data, considering not only the spatial dimensions but 
also an extra dimension related to the correlation among polarization 
parameters like S0, DoP, and AoP. Hence, we integrate 2D and 3D 
convolutions to process multi-polarization information. This interaction 
effectively expands the model’s ability to handle complex data struc-
tures and tasks, as it enables the model to learn features at diverse scales 
and dimensions.

Motivated by these analyses and the inherent shortcomings of 
existing methods, to detect TO, we propose a new intensity-spectral 
polarization fusion framework, termed as FuseISP. FuseISP proposes a 
new intensity-spectral polarization mixed modulator (ISPMM) and a 
hierarchical feature fusion (HFF) to fuse features across multi-scale and 
multi-level. FuseISP also introduces a multi-level decoder (MLD) based 
on the joint 2D/3D CNNs to model transparent regions by analysing 
comprehensively multiple polarization characteristics, 2D plane, and 3D 
space. We have conducted extensive ablation experiments to validate 
the effectiveness of our proposed framework.

To sum up, there are three-fold contributions to this work: 

• We proposed two feature fusion modules, i.e., ISPMM and HFF, 
where ISPMM aggregates information at the modality-level while 
HFF fuses information between features at different levels and scales.

• Our introduced the MLD module simultaneously capture inter- and 
intra-spectro-polarimetric relationships.

• Through extensive experiments, results show that our approach is 
more efficient for TOD than several state-of-the-art methods with 
superior generalization and robustness.

The remainder of this article is organized as follows. Section 2 de-
scribes several typical polarization object detection (POD) methods. 
Section 3 introduces the proposed FuseISP, including overall pipeline 
and network structures. Then, experiments on real-world scenes are 
performed to verify our method in Section 4. Finally, the conclusion is 
given in Section 5.

2. Related work

This section offers a concise review of POD based on their application 
scenarios, and focuses on the specific methods that are most pertinent to 
our work.

Polarization-Based Vehicle-Road Scene Detection. Automatic and 
accurate detection of road traffic objects is an important task in traffic 
safety and intelligent transportation system, which mainly includes road 
and vehicle detection. Casselgren et al. [25] first propose a method of 
using polarized short-wave infrared light to classify the four road con-
ditions of dry, water, ice, and snow in winter, and the discrimination 
effect is obvious. Aiming at the problem of vehicle–road environment 
perception in low visibility, Wang et al. [26] fuse polarization features 
and intensity as the input feature of U-Net network to segment the 
vehicle–road scene. Although this scheme can alleviate the problem of 
vehicle–road scene detection in low visibility to some extent, it may not 
work at night. To overcome the above problem, Wang et al. [27] pro-
posed a multi-branch input end-to-end network model, i.e., MBIBEDN, 
based on polarized and infrared images to deal with vehicle-road scene 
detection in daytime, night and low visibility. Recently, Dong et al. [28] 
propose a special method for vehicle detection, which uses spectral 
polarization characteristics as additional clues to eliminate the chal-
lenges brought by the changes of lighting/weather conditions and 
vehicle density in the scene. This vehicle detection model dynamically 
integrates the complementary characteristics of RGB and polarization to 
learn the inherent material characteristics of the vehicle and realize 
vehicle detection.

Polarization-Based Camouflaged Object Detection. Camouflaged 
object detection (COD) has important application value in many fields, 
such as medicine and military. Because of the similarity between the 
camouflage object and its background, the accuracy of object identifi-
cation is reduced. Polarization can provide valuable insights for un-
derstanding the characteristics of objects with different material 
properties and surface roughness. It reflects the difference of polariza-
tion information between the camouflage object and its background, 
increases the contrast between them, and can improve the accuracy of 
object detection even in complex scenes. Using polarization information 
to assist COD has attracted the attention of some researchers, and a se-
ries of excellent work has emerged. For instance, Fu et al. [29] propose a 
multi-modal COD method based on gating fusion from the perspective of 
combining polarization and intensity characteristics. Wang et al. tried to 
‘amplify’ the difference between the object and the surrounding envi-
ronment by using polarization information, and successively proposed 
two network models for COD, i.e., PolarNet [30] and IPNet [31].

Polarization-Based Transparent Object Detection. The study of 
TOD from polarization is still in its infancy. To our best knowledge, there 
are a few methods (i.e., Polarized Mask R-CNN [8], IEEETOSNet [9], and 
PGSNet [24]) available for TOD. For example, PGSNet [24] dynamically 
fuses and weights both the RGB colour and polarization cues using a 
novel global-guidance and multiscale self-attention module, and lever-
ages global cross domain contextual information to achieve robust 
segmentation. Unlike PGSNet, IEEETOSNet [9] introduces an edge- 
enhanced and input extensible TO segmentation network that is 
capable of selecting the most optimal combination of inputs from 12 
polarization parameters. Further, IEEETOSNet constructs a dataset 
containing multi-polarization cues captured with a monochromatic po-
larization imaging system. Nevertheless, it still remains a huge challenge 
for reliable TOD from polarization. we design a new solution to explore 
TOD in this paper.

Fig. 1. Typical challenges in transparent object detection. Scene 1: the trans-
parent object area blends into the background environment and lacks texture. 
Scene 2: low-light results in poor visibility in the transparent object area.
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Other Application Scenarios. In addition to the wide application of 
polarization imaging in the above-mentioned fields, the polarization- 
based target detection technology is also used in other fields, 
including material identification [32] and agricultural product quality 
inspection [5]. Recently, Yang et al. [5] combined polarization imaging 
with ResNet-18 and ghost bottleneck for nectarine damage detection, 
and the detection accuracy reached more than 96%, showing excellent 
early nectarine damage detection performance.

3. Proposed method

3.1. Description for polarization optics

To facilitate network training, researchers usually use a commercial 
DOFP polarization camera to collect a real-world polarization dataset. In 
DOFP polarization imagers, a micro-polarizer array (MPA) typically 
comprises four distinct polarization orientations, i.e., 0◦, 45◦, 90◦, and 
135◦, dividing the light into four different orientations. Hence, for one- 
shot, it can photograph simultaneously four polarized images, i.e., I0◦, 
I45◦, I90◦, and I135◦. Fig. 2 exhibits the DOFP polarization camera and its 
corresponding MPA pattern.

In order to describe the polarization of light and the interaction be-
tween light and objects systematically and scientifically, the researchers 
put forward some mathematical characterization methods of polarized 
light, such as Poincare sphere [33], Jones vector [34] and Stokes vector 
S=[S0, S1, S2, S3] [35,36]. Among them, Stokes vector method can 
represent polarized light with arbitrary polarization state, and can fully 
characterize the polarization characteristics of incident light waves and 
light waves after interaction with substances. Therefore, Stokes vector 
description is the most commonly used method to express polarization 
characteristics in the field of polarization detection. In general, circu-
larly polarized light is rarely available in the natural environment in 
visible band [37], so S3 component is not considered in this paper. The 
polarization parameters Stokes vector S can be expressed as: 

S =

⎡

⎣
S0
S1
S2

⎤

⎦ =

⎡

⎣
I0◦ + I90◦

I0◦ − I90◦

I45◦ − I135◦

⎤

⎦, (1) 

where S0 refers to the total intensity received by the camera; S1 repre-
sents the intensity difference between the vertical and horizontal com-
ponents; S2 denotes the intensity difference between the 45◦ and 135◦

components. Based on the Stokes vector S, DoLP and AoP are defined as 

DoLP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
1 + S2

2

√

S0
, (2) 

AoP =
1
2
× arctan(

S2

S1
). (3) 

3.2. Overview of our approach

The overall pipeline of our proposed FuseISP is illustrated in Fig. 3. 
Given the input features RGB S0, DoLP, and AoP, they are first separately 
processed by three parallel stem layers consisting of one ConvNeXt [38] 
backbone-based HFE, to encode multi-scale features at {1/4, 1/8, 1/16, 
1/32} of the original image resolution. Here, the ConvNeXt backbone is 

initialized with a model pre-trained on ImageNet. Next, the multi-level 
features are executed with multiple ISPMMs to produce the fused in-
formation at the modality-level. Then, to fully exploit complementary 
information from hierarchical features, the HFF is employed to generate 
the fused information on different levels. Finally, we sent all fused fea-
tures to the MLD to produce predictions. We will describe the ISPMM, 
HFE, and MLD in detail below.

3.3. Intensity-spectral polarization mixed modulator

Diagrammatic details on how to produce fused features between S0 
and polarization features are shown in Fig. 4. Specifically, for each input 
feature map x ,e.g., x∈[S0, DoLP, AoP], is first partitioned into J groups 
along the channel dimension. Then, the ISPMM concatenates all 
grouped feature maps from different modalities to obtain J groups of 
mixed features. Finally, to obtain final mixed feature M, the ISPMM 
aggregates the J groups of fused features along the channel dimension 
and adopts J groups DWConv to integrate the polarization information 
from different receptive field perspectives. The above process can be 
formulated as: 

[x1,⋯, xj] = GELU(Conv1×1(DWConv3×3(x) ) ), j = 1,⋯, J (4) 

mj,k = GELU
(
Conv1×1

(
DWConvk×k

(
xj) ) ), k = 1,⋯,K (5) 

M = Conv1×1(Concat(m1,5,⋯,mj,k,⋯,mj,k)) (6) 

where DWConv3×3(•) is a depth-wise convolution [39] with kernel size 
3×3, DWConvk×k(•) is a depth-wise convolution with kernel size k×k 
and k = j×2+3; Concat(•) denotes feature concatenation operation; 
Conv1×1(•) is a 2D CNN layer with kernel size 1×1. Note that the hyper- 
parameter J is empirically set to 3.

Overall, our ISPMM offers following advantages: 1) It assists our 
model in capturing the relationships across different modalities; 2) It 
allows each spatial location to observe the local environment in different 
scale spaces, further expanding the receptive field of the whole network.

3.4. Hierarchical feature fusion

The progressive down-sampling operations in the feature extractor 
stage cause the feature information loss problem. To address this limi-
tation, we introduce the HFE to capture connections between features at 
different levels, following [40]. Fig. 5 shows the detailed network 
structure of the HFE. HFE consists of two consecutive stages: fine- to 
coarse-level fusion (FCF) and coarse- to fine-level fusion (CFF).

In the FCF stage: step 1, feature T 2 from the intermediate branch is 
executed with a GELU activation function and a 3×3 convolution to 
obtain the enhanced feature T 1

2; step 2, the difference between T 1
2 and 

Fig. 2. The DoFP polarization camera, along with its corresponding MPA 
pattern. The direction of the arrow aligns with the transmission direction.

Fig. 3. Pipeline of our proposed FuseISP.
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T 3 is calculated and update the T 2; step 3, T 1 performs the same 
operation as the step 1. Meanwhile, the difference between the output of 
the step 2 and T 1 is computed and obtain the updated feature T *

1. The 
FCF stage aims to propagate information hierarchically from the high- 
level to the low-level features. This process is formulated as 

T
2
2 = Upsampling(GELU(T 3 − Conv3×3(GELU(T 2)))) + T 2 (7) 

T
*
1 = Upsampling

(
GELU

(
T

2
2 − Conv3×3(GELU(T 1))

))
+ T 1 (8) 

where Conv3×3(•) denotes a 3×3 2D CNN layer with a stride of 2; Up- 
sampling (•) refers to bilinear interpolation operation.

Conversely, in the CFF stage, it is designed to spread information 
hierarchically from the low-level to the high-level features. The process 
of the CFF can be presented as 

T
*
2 = T

2
2 + Conv3×3

(
GELU

(
T

*
1 − Upsampling

(
GELU

(
T

2
2
))))

(9) 

T
*
3 = T 3 + Conv3×3

(
GELU

(
T

*
2 − Upsampling(GELU(T 3))

))
(10) 

3.5. Multi-level decoder

Previous methods lack the joint analysis among multiple polarization 
characteristics, specifically inter- and intra-polarization connections 
hindering the effective detection of many TO areas. To alleviate the 
above problem, we design the MLD to consider the correlations among 
multiple polarization characteristics inspired by [4,15,41], and Fig. 6A 
displays the architecture of the MLD. Concretely, MLD is constructed by 
three basic neural cells, as shown in Fig. 6 (A.1), (A.2), and (A.3). The 
modules in Fig. 6 (A.1) and (A.2) have a single 2D CNNs block and 3D 
CNNs block, respectively, while the module in Fig. 6 (A.3) contains both 
the 2D and 3D CNNs blocks. The linear interpolation operation is 
adopted to gradually recover the spatial resolution of feature maps. 
MLD’s structure is a standard triangle, which consists of two stems, 
neural cells for cross-space information transfer, and skip connection (i. 
e., [a, b, ⋯, j]). Both stems primarily transmit 2D and 3D information, 

respectively. The interaction between 2D and 3D information of the 
branches on the two stems through a joint 2D/3D CNN, which then 
propagates to more distant branches. It aims at distilling more 
discriminative features.

3.6. Deep supervision loss

Based on MLD, we use deep supervision to enhance the robustness of 
the learning process for hidden layers. Specifically, for the outputs of the 
MLD’s two stems, we sequentially apply a 3D CNNs with a single output 
channel and the sigmoid activation function to derive several pre-
dictions {Pi, i = 1, 2, ⋯, 7}. We adopt a binary cross-entropy (BCE) loss 
L bce and a IoU loss L iou for training our model, which can be formulated 
as follows: 

L = L bce(P1, G) + L iou (P1, G) + λ
∑7

i=2
[L bce ​ (Pi, ​ G)

+ ​ L iou ​ (Pi, ​ G)] (11) 

where G denotes the ground-truth. λ denotes the weighting scalar for 
loss balance, and we empirically set it to 0.4.

4. Experiments

4.1. Experimental settings

A) Dataset: To experimentally demonstrate the effectiveness of our 

Fig. 4. Illustration of our proposed ISPMM.

Fig. 5. The overall architecture of the HFF.

Fig. 6. The overall architecture of the MLD.
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proposed FuseISP, we train and verify it on a large-scale polarization 
glass segmentation dataset, called RGBP-Glass, which is currently the 
publicly available high-quality dataset. The dataset comprises 4510 RGB 
intensity along with pixel-aligned RGB AoP and DoLP images. Each 
image features manually annotated accurate ground-truth at the pixel- 
level. Notably, each sample in RGBP-Glass contains at least one real- 
world glass object [24]. The types of transparent objects in this study 
include window panes, mirrors, glass guards, automotive window panes, 
etc. These targets represent common transparent objects encountered in 
daily life. For more detailed information on the dataset construction, 
please refer to ref. [24]. For the input polarization images, we first 
employ a BM3D [42] and a polarization difference model [43] to 
denoise and de-mosaic respectively. Finally, we randomly selected 3157 
images and 451 images as the training set (denoted as TR3157) and 
validation set (denoted as VA451), respectively. The remaining 902 
images constitute the testing set (denoted as TE902).

B) Implementation Details: The proposed FuseISP is implemented in 
PyTorch [44] library and is trained for 150 epochs with a batch size of 
15 on a NVIDIA A800-80 GB GPU using the Adam optimizer to optimize 
the model parameters with momentum term (β1=0.5 and β2=0.999), 
weight decay of 10-4. The initial learning rate is set to 0.001, and the 
learning rate is reduced to half of the original every 15 epochs. Due to 
computational resource constraints, the resolution of all images was 
adjusted from 612×512 to 416×416. FuseISP exhibits a computational 
complexity of 107.59G FLOPs, and achieves 12fps during real-time 
inference.

C) Evaluation Criteria: Five widely recognized metrics are employed 
to comprehensively evaluate the performance of our method for TOD: 
overall accuracy (OA), intersection over Union (IoU), balanced error rate 
(BER) [45], weighted F-measure (Fβ) [46], mean absolute error (MAE). 
For OA, IoU, and Fβ, higher is better, while for MAE and BER, lower is 
better.

4.2. Comparison with the advanced methods

We validate the effectiveness of our method by comparing it with 
several advanced object detection methods, including UNet3+ [47], 
PSPNet [48], DeepLabv3+ [49], FastSCNN [50], LRSR-net [51], Mir-
rorNet [11], PolarNet [30], and IPNet [31]. For a fair comparison, all 
methods are retrained on the training dataset TR3157 and evaluated on 
the testing dataset TE902.

A) Quantitative Performance Comparison
Table 1 shows the evaluation results of our FuseISP compared with 

previous methods. The results clearly show that FuseISP achieves much 
better performance, especially in terms of OA, MAE, and Fβ, compared to 
other methods. Particularly, FuseISP achieves 10.20%, 3.01%, and 
5.57% improvements in MAE, IoU, and BER, respectively, compared 

with the recent best polarization object detection method, i.e., IPNet. 
Furthermore, our FuseISP achieves 0.68%, 1.65%, and 0.43% perfor-
mance improvement than the previous advanced CNNs-based method 
FastSCNN on OA, IoU and Fβ, respectively. The difference between our 
method and competitors in the IoU values is statistically significant, with 
a p-value<0.01 in the Student’s t-test. This result demonstrates that 
FuseISP has a stronger ability to rectify and fuse multi-modal informa-
tion features than the advanced methods.

B) Qualitative Performance Comparison
Moreover, the visual comparison between FuseISP and other com-

parison methods in Fig. 7 further demonstrate the advantage of our 
method. Here we select four cases to illustrate. Each case is associated 
with different properties, including complex geometry, low contrast, 
low-light, and complex surroundings. Our goal is to demonstrate that 
our approach can work more robustly and better under different cir-
cumstances. From Fig. 7, it can be easily seen that our method not only 
discriminates the right objects but also maintains their sharp boundaries 
in almost all circumstances. However, the other methods sometimes fail 
when dealing with complex scenes, especially when the objects are with 
complex surroundings (the 3th row in Fig. 7) and low-light environment 
(the 2th row in Fig. 7). It is noteworthy that our FuseISP exhibits a stable 
generalization capability across dark and light environments.

4.3. Model analysis

Here, we present extensive ablation studies of our model to explore 
its performance on both validation dataset VA451 and testing dataset 
TE902, including the feature sources and the module parts.

A) Features ablation: This section examines the extent to which the 
introduced spectral polarization characteristics can help FuseISP 
discriminate transparent regions. Table 2 reports the discriminative 
performance comparison of these feature combinations and p-values in 
the Student’s t-test, including S0, S0+DoLP, S0+AoP, and 
S0+DoLP+AoP. By carefully observing Table 2, the performance of 
S0+DoLP+AoP consistently outperforms other features. The introduc-
tion of the DoLP and AoP achieves 30.26%, 30.93%, 6.26%, 18.02%, 
and 2.16% average improvements of OA, MAE, IoU, BER, and Fβ, 
respectively compared with S0 on both datasets VA451 and TE902, with 
p-value<10-3. These comparison results can demonstrate that the 
detection performance of FuseISP is indeed improved after the combi-
nation of intensity and spectral polarization is adopted.

B) Modules ablation: We progressively delete the modules of 
FuseISP. As shown in Table 3, removing each component of FuseISP will 
cause a performance decrease, demonstrating the necessity and impor-
tance of the modules we designed. The removal of ISPMM causes a 
significant loss of performance, indicating that our ISPMM module is 
crucial for TO prediction. However, the removal of HFF does not cause a 
significant loss of performance, while the removal of the MLD will result 
in a noticeable decrease. Because the inter- and intra-polarization re-
lationships can help the model directly, adding the shared information 
among different levels may not be helpful when down-sampling oper-
ations in the feature extractor stage cause the feature information loss. 
Additionally, we also show the impact of removing multiple modules to 
assess interdependencies. If we remove all the components and only feed 
the splicing features into the HFE and its matching decoder, the per-
formance will be much poorer, thus, brutally combining embeddings 
without a suitable model is impracticable.

4.4. Failure case analysis

Like all the other TOD methods, our FuseISP cannot detect TO with 
the strong or extensive reflections due to limited context information as 
shown in Fig. 8. The highlight in the reflection layer obscures the 
invisible background, making it easy to miss detections and cause mis-
classifications. To be concrete, the MAE and OA of FuseISP are 0.112 and 
90.1%, respectively. Similarly, large-area reflective obstacles disrupt the 

Table 1 
Objective evaluation results of different methods on testing dataset. The best and 
second-best results are in red and blue, respectively. ↑&↓ denote larger and 
smaller is better, respectively.

Method OA 
(%)↑

MAE↓ IoU 
(%)↑

BER 
(%)↓

Fβ(%)↑ P- 
value(IoU)

FastSCNN 91.76 0.115 82.47 9.34 90.66 <0.01**
UNet3+ 89.64 0.131 79.70 10.48 89.12 <0.0001*
DeepLabv3+ 90.96 0.109 80.98 9.56 89.96 <0.0001*
PSPNet 89.61 12.68 78.46 12.45 86.55 <0.0001*
MirrorNet 89.44 0.121 79.22 11.30 87.02 <0.0001*
IPNet 91.08 0.098 81.38 8.97 90.15 <0.0001*
LRSR-net 81.58 0.236 63.75 21.82 75.80 <0.0001*
PolarNet 91.15 0.099 83.11 9.66 89.84 <0.0001*
FuseISP 

(Ours)
92.39 0.088 83.83 8.47 91.05 −

P-value(IoU) denotes that significance (P-value) in the IoU values between 
FuseISP and other methods are assessed by Student’s t-test. *P-value < 0.0001, 
**P-value < 0.01.
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true color distribution of both the TO and their surroundings, further 
complicating TO detection. The main reason for this phenomenon 
should be that there are only few images containing highly reflective 
transparent objects in the training dataset. Thus, FuseISP is unable to 
learn sufficient knowledge for this case, leading to less effectiveness in 
this case.

5. Conclusion

In this paper, we propose a novel approach, FuseISP, designed from 
the ground up specifically for identifying transparent regions by inte-
grating neural networks and spectral polarization imaging. FuseISP le-
verages intensity information, DoLP and AoP, along with three novel 
modules, i.e., ISPMM, HFF, and MLD, to establish the correlations 
among polarization, 2D planes, 3D spaces, and transparent regions. The 
results demonstrate significant improvements and are consistently bet-
ter than the existing several advanced methods. Despite its strengths, 
FuseISP faces limitations. It still occasionally struggles with poor per-
formance when dealing with highly reflective transparent objects. 
Additionally, FuseISP suffers from a lack of interpretability. The un-
derlying mechanisms of the DL model remain opaque, presenting a 
black-box. However, challenges remain in effectively utilizing multiple 

Fig. 7. Detection results of different comparison methods. Green regions, blue regions, and red regions represent true positive, false positive, and false negative, 
respectively.

Table 2 
Objective evaluation results of different features. ↑&↓ denote larger and smaller 
is better, respectively. Numbers highlight with red indicate the best results.

Dataset Data 
Type

OA 
(%)↑

MAE↓ IoU 
(%)↑

BER 
(%)↓

Fβ 

(%)↑
P-value 
(IoU)

VA451 S0 89.99 0.124 79.61 9.88 89.72 <0.001*
​ S0 +

DoLP
92.41 0.907 83.44 8.26 90.57 <0.01**

​ S0 +

AoP
91.21 0.101 81.57 9.43 90.42 <0.01**

​ S0 +

DoLP +
AoP

92.31 0.087 83.52 8.20 91.05 −

TE902 S0 89.51 0.128 78.48 10.50 89.10 <0.001*
​ S0 +

DoLP
92.40 0.906 83.63 8.38 90.88 <0.01**

​ S0 +
AoP

91.56 0.098 82.07 9.37 90.63 <0.01**

​ S0 +

DoLP +
AoP

92.62 0.087 84.46 8.50 91.63 −

P-value(IoU) denotes that significance (P-value) in the IoU values between 
S0+DoLP+AoP and other features are assessed by Student’s t-test. *P-value <
0.001, **P-value < 0.01.

Table 3 
Ablation Analysis for the Design Choices of FuseISP. ↑&↓ denote larger and smaller is better, respectively. Numbers highlight with red indicate the best results.

Configuration for FuseISP VAL451 TE902

OA(%)↑ MAE↓ IoU(%)↑ BER(%)↓ Fβ (%)↑ OA(%)↑ MAE↓ IoU(%)↑ BER(%)↓ Fβ(%)↑

FuseISP ​ 92.31 0.087 83.52 8.20 91.05 ​ 92.62 0.087 84.46 8.50 91.63
¡ ISPMM ​ 91.21 0.107 81.23 9.30 89.11 ​ 91.33 0.106 81.44 9.38 89.39
¡ HFF ​ 92.38 0.092 83.20 9.08 91.13 ​ 92.42 0.093 83.40 9.16 91.24
¡ MLD ​ 91.22 0.104 81.53 9.62 89.60 ​ 91.46 0.103 82.04 9.47 89.89
¡ HFF-MLD ​ 89.08 0.171 78.55 10.88 87.71 ​ 88.98 0.170 78.60 11.20 87.85
¡ ISPMM-MLD ​ 90.76 0.142 80.87 9.55 88.90 ​ 90.81 0.143 80.71 9.22 88.86

Fig. 8. The strong or extensive reflections cause transparent object detection 
to fail.
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polarization characteristics to enhance TOD, and further advancements 
are needed in characterizing polarization information and developing a 
lightweight network model. Nonetheless, significant improvement has 
been achieved by our proposed FuseISP. We expect the technique 
described here to be useful for TOD.
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