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The adaptability of most polarization scattering imaging,
such as supervised learning-related and physics-based algo-
rithms, is still limited, especially in dynamic or variable
scattering environments. More importantly, it is a chal-
lenge to obtain a sufficient amount of polarization data
for practical applications. Hence, we propose a multi-task
dynamic-modulated polarization de-scattering framework
(MDPF) based on the unsupervised training strategy, which
achieves real-time de-scattering for a single image, by using
the physical transmission model of light in scattering media
as well as gradient descent optimization. Our proposed
framework can significantly improve adaptability to large-
range scattering conditions, without large-scale datasets for
training. In addition, the experiments in real haze scenar-
ios verify the effectiveness and superiority of our proposed
method, demonstrating the potential of the proposed method
in real-world environments, such as remote sensing or under-
water imaging. © 2025 Optica Publishing Group. All rights,
including for text and data mining (TDM), Artificial Intelligence (Al)
training, and similar technologies, are reserved.
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With the development of deep learning technology, polariza-
tion imaging through scattering media based on deep learning
(PIDL) has become one of the important solutions for imag-
ing through scattering media. The PIDL methods based on
supervised learning have achieved many excellent results [1-4].
Hu et al. have proposed the PDN for polarization underwater
imaging, which directly used the images with different direc-
tions (0°, 45°,90°, 135°) to train the network and obtained
excellent recovery results [1]. To analyze the multidimensional
polarization information deeply, Lin et al. have proposed the
SAM-MIU-net to explore maximizing the utilization of polar-
ization information with limited data [2]. Moreover, Fan et al.
have proposed a method that combined 3D and 2D convolution
to balance the extraction of polarization information between
different channels, resulting in a more accurate modeling of
the road area [3]. However, on the one hand, the performance
of supervised learning-based methods relies on a large amount
of data; however, the specificity of polarization data detection
makes it relatively difficult to acquire polarization image data,
especially in real scenes. On the other hand, the trained model is
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not flexible enough to adapt to the changing dynamic scattering
environment due to the limitation of the type and amount of
training data.

So, in this paper, we explore the unsupervised strategies. In
particular, based on the theory that incorporating a complete
physical model representing the image formation process into
the deep neural network [5], we designed a multi-task dynamic-
modulated polarization de-scattering framework (MDPF). The
MDPF effectively combines the physical model with the fea-
ture extraction and optimization capabilities of deep learning,
creating a synergistic approach for enhanced performance. For
common scattering media, such as atmospheric and underwa-
ter, the process of information transmission can be modeled
using the Jaffe-McGlamery model [6,7], and most de-scattering
or de-hazing models [8,9] obtain a clear image by accurately
estimating their parameters, especially the transmission rate
map. Because backscattered light has a significant polariza-
tion dependence [10], polarization is one of the important
factors influencing the quality of imaging through scattering
media, and several studies have also proved that there is a
close relation between the state of polarization of output light
and the characteristics of particles in scattering media [11,12].
Therefore, by using polarization information, the transmission
process of target information in the scattering media can be ana-
lyzed with more accuracy. This enables effective mitigation of
the adverse effects of scattering, thereby enhancing the image
quality [13,14].

For this reason, we employ the Jaffe-McGlamery model
based on polarization information as the physical drive to
guide the unsupervised framework. In particular, we design a
network architecture based on the inherent properties of the
polarization information, enabling the model to fully capture
relevant features and provide an accurate removal of scatte-
ring effects. Subsequently, the MDPF is optimized using the
gradient descent algorithm to obtain precise parameters of the
Jaffe—-McGlamery model, thereby getting accurate and high-
quality images. Notably, the MDPF is trained without relying on
large datasets, allowing for real-time optimization of scattering
images. So, it demonstrates strong adaptability to the large-range
scattering conditions encountered in real-world environments,
such as remote sensing or underwater imaging.

The framework of our proposed MDPF is shown in Fig. 1.
Here, our proposed framework is divided into three tasks,
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Task-L, Task-A, and Task-t, respectively, each of which is used to
form parameters in the Jaffe-McGlamery model: the brightness
of the scene L,(x, y), the intensity of ambient light at infinity
A,, and the transmittance t,(X, y) ((x, y) presents the pixels of
the image). The process can be presented following:

Ln(xvy) = FL(f;'n);A;z = FA(fin); tn(xsy) = Ft(fl"n)s (1)

where F| (.), FA(.), and F,(.) are the mapping functions of each
task and f;, is the input feature. Then, the L,(x, y), A,, and
t,(X, y) are incorporated into the Jaffe—McGlamery model. Then
the degraded image I,(x, y) calculated by the network can be
presented as follows:

I,,(x,y) = Ln(xs y)tn(x’ y) +An(1 - tn(x’ y)) (2)

Then, the mapping function F of MDPF, defined by weights and
biases, can be learned from Eq. (3). The weights and bias of
the MDPF were optimized by gradient descent using the error
between I,(x, y) calculated by the network and I(x, y) measured
in the real environment. As the iterative process progresses,
the calculated scattering image I,(x, y) will converge to the
measured scattering image I(x, y). When the error becomes
minimum, the network parameters reach optimal, and each task
in MDPF will get the effective result. Thereby, the Task-L will
get the clear image we need:

Fy- = argmin [|1,(x, ) = 1(x, y)| . (3
0€®

Importantly, the polarization information has better stability
than the light intensity information in the scattering media, and
it not only reflects the fine characteristics of the target but also
reflects the characteristics of the scattering media during trans-
mission. So, it is also an invaluable tool for imaging in changing
environments, and polarization information is more sensitive to
the scattering process and scattering distance [15], so the use of
polarization information can provide more accurate and precise
characteristics for the estimation of the scattering process.

Hence, leveraging the sensitivity and advantages of polariza-
tion information in the scattering process is crucial for effectively
implementing the unsupervised backscattering scheme. So,
we design the corresponding modules in Expert Network
(EN) according to the characteristics of polarization informa-
tion. Considering the multidimensional nature of polarization
information, the multi-scale attention mechanism (MAM) is
introduced to analyze features at multiple scales. Moreover, we
incorporate the Fourier feature extraction (FFE) into the net-
work, enabling it to perform diverse spatial analyses on the
extracted features. In addition, we also use gating network
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(GN) to fuse polarization information according to specific
task requirements dynamically. By combining the advantages of
polarization information and the characteristics of the MDPF, we
can achieve the de-scattering processing of a single image using
the unsupervised strategy. This innovative approach allows us to
effectively enhance image quality in the presence of scattering
media without relying on labeled training data.

The overall structure of MDPF is shown in Fig. 1, which con-
sists of the EN, GN, and reconstruction module (RM). First, we
input multidimensional polarization information (Iy, Iys, and Iy,)
to the EN-0, EN-1, and EN-2 to obtain the analyzed polarization
features. Subsequently, excluding the iterative update driven by
the loss function to the algorithm, we also use the GN to provide
fusion parameters for adjusting the polarization feature which is
obtained by EN. Lastly, the modulated features are input to the
RM to reconstruct the corresponding task result. The FLOPs and
parameters of MDPF are 38445.3 M and 90.61 M, respectively.

The structure of EN is shown in Fig. 2(a). We innovatively
use the Fourier layer (FL) as the FFE module. The FL is based
on the spatial Fourier transform module (SFTM), which uses
learnable filters and Fourier transform (FT) to process the polar-
ization features. The SFTM is following a similar architecture
in [16]. Each FFE consists of four FLs and uses long connec-
tions to integrate the features of beginning and end. The SFTM
uses a 2D discrete FT to transform the input features into the
frequency domain and then transforms them linearly. After the
linear transformation, the processed feature is returned to the
spatial domain using a 2D discrete inverse FT. Using the SFTM,
the initiative and interpretability of the MDPF will be increased
through the learnable optimization filter, and in addition, the fea-
tures can be analyzed from the frequency domain space, thereby
the feature information dimension will be increased. What is
more, the SFTM can reduce the internal parameters to increase
the image inference speed [16]. From Fig. 2(a), after traversing
two convolutional layers, the feature is fed into the two lay-
ers of FFE, using the channel attention mechanism (CAM) to
further enhance the analyzing capacity of this module. Addi-
tionally, the output feature from each FFE and CAM will pass
through the MAM together. The structure of MAM is shown in
Fig. 2(a), the 3 X 3 convolution with varying expansion rates is
used to analyze the polarization features at multiple scales. The
model’s attention is then focused on key feature expressions,
thereby enhancing the role of polarization features throughout
the recovery process. Then, the output feature passes through
the FFE again. Subsequently, it passes through the self-attention
mechanism module (SAM) designed by our previous work [2]
together with the output of the CAM.

In GN, as shown in Fig. S1(a) in Supplement 1, the transformer
structure (TS) based on [17], which is more focused on global
information and better at generating sequences, is introduced
to provide weights to modulate features for different tasks. The
GN is based on the structure in [18] of us, using three layers
of TS instead of convolutional layers as an improvement to
analyze the input features. Then the features pass through the
fully connected (FC) layer to generate the adjusted parameters.
To accommodate the diverse tasks, we input task-specific data
into the GN to achieve parameter fusion that optimally facilitates
the generation of task results. Therefore, as to the Task-L, we aim
to obtain clear target information, so the Fourier image, which
has the concentrated expression of the target characteristics and
is not susceptible to environmental influences, is used to provide
dynamic fusion parameters to adjust the polarization feature to
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Fig. 2. (a) Structure of EN; (b) structure of GN; (¢) structure of
RM.
Table 1. Evaluation Metrics for Different Turbidity Lev-
els
PSNR Contrast EN SD
129NTU 13.3778 281.1277 6.06438 55.5993
29.4NTU 12.9747 269.7715 6.3231 31.0542
46.4NTU 11.6337 142.4012 6.0351 25.3822
62.5NTU 10.0440 47.3557 6.7555 22.5029

fusion. For the Task-A and Task-t, we use the DoLP image,
which prominently expresses polarization information essential
for analyzing scattering conditions, to provide dynamic fusion
parameters for estimating the environmental scattering situation
and providing a clear representation of the difference between
the target and the background.

In Fig. S1(b) in Supplement 1, the RM is composed of the
3 * 3 size of convolution, upsampling, and sigmoid. The features
co-modulated by the EN and the GN are input to the RM to get
the corresponding task results with the image size of 256 x 256.

In this paper, we use structural similarity (SSIM) [19] as the
loss function to drive the parameter of the MDPF updates. The
MDPF works in an image processing unit (NVIDIA RTX 3090)
using a Pytorch framework with Python 3.6 in the computational
environment that Windows Server 10 (Version 21H1) Inter(R)
Core (TM)i7.9750 H CPU at 2.60 Hz, 2.59 GHz, and 16.0 GB of
RAM. The optimizer is the Adam (Add Momentum Stochastic
Gradient Descent) with a learning rate of 0.0005, 31 =0.9 and
[32=0.999. The MDPF can take 0.2 s for one epoch.

First, we evaluated the performance of our proposed MDPF
using the dataset obtained from turbid underwater environments
in a controlled laboratory setting. Polarization images are cap-
tured in water with turbidity levels ranging from 12.9NTU
to 62.5NTU (imaging distance fixed at 18 cm). As shown in
Figs. 3(b1)-3(b4), the results indicate that our method can
effectively adapt to environments with varying scattering levels,
successfully recovering the target even at the highest turbidity
of 62.5NTU. These findings also highlight the capability of
our method for large-range scattering imaging. In addition, as
shown in Table 1, we have calculated the peak signal to noise
ratio (PSNR) [20] and contrast to assess the quality of the image,
the information entropy (EN) to quantify the richness of image
information [21], and the standard deviation (SD) to assess the
image clarity [22]. The results demonstrate our method performs
well over large-range turbidity environments.
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Fig. 3. Test results for different turbidity levels.

Table 2. Comparison Results of Objective Evaluation
Metrics

Method PSNR Contrast EN SD

Ours 13.2705 130.3689 6.8388 29.0023
DCP 8.4858 122.4173 6.3231 11.5443
AoP-Dehaze 12.4028 76.2565 6.0351 15.7260
TIUNet 11.1808 15.4700 6.7555 30.0892
PID2Net 11.6524 38.2182 6.5293 21.4864

To demonstrate the viability of our proposed approach, we
test it by using scattering images taken in real scenes by a polar-
ization camera with 2480 x 1860 pixels. The real-world dataset
consists of scattering images captured under varying degrees of
severe haze, with the haze intensity increasing from left to right
in Figs. 4(al)-4(a4). These real-world scenarios involve more
complex scattering media and more intricate target structures,
reflecting the challenges encountered in practical applications.
From Figs. 4(b1)—4(b4), the results of our method are able to
recover the target clearly. From light fog to dense fog (left to
right), the results are all with clear and high contrast. What
is more, we compare our framework with other de-scattering
methods in order to demonstrate the superiority of the MDPF.
Based on Fig. 4, the results obtained by our method (MDPF)
demonstrate more realistic, with satisfactory brightness, and
higher contrast, and we have found that the image quality of
the DCP [23] method is dark to some extents, and the recovery
effect varies considerably depending on the degree of scattering,
as shown in Figs. 4(c1)—4(c4). Then, the AoP-based denoising
method [24] has limitations in recovering details, as shown in
Figs. 4(d1)-4(d4). From Figs. 4(e1)—4(e4) and Figs. 4(f1)—4(f4),
the TIUNet [25] and PID2Net [26] exhibit limited generalization
performance when applied to outdoor scenes with significantly
different scattering environments, primarily due to the con-
straints of the training dataset. While these methods can capture
the general outline of the scene, they struggle to recover fine
details, resulting in a substantial loss of information, and we
calculate the corresponding estimated indicators in Table 2.

Compared with other methods, the images obtained by MDPF
have better image clarity and information richness, consistent
with the results of subjective evaluation indicators. What is
more, we enlarge the details of the image rebuilt by DCP and the
AoP-based method, the image details can be seen in the red box
and blue box, respectively. The details of our MDPF have a high
resolution and are capable of restoring the scene’s intricacies, as
shown in the red box of Fig. 5(al) and the blue box of Fig. 5(a2).
The fine-grained features are faithfully preserved, showcasing
the effectiveness of our approach in capturing and reconstruct-
ing intricate scene details. The performance of the DCP is that
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Fig. 4. Results of different models. (al)—(a4) Scattering image;
(b1)—(b4) results of MDPF; (c1)—(c4) results of DCP; (d1)-(d4)
results of the AoP-based denoising method; (e1)—(e4) results of the
TIUNet; (f1)—(f4) results of the PID2Net.

Fig. 5. Enlarged details of images with different methods. (al)
and (a2) MDPF; (bl) and (b2) DCP; (c1) and (c2) AoP-based
denoising method.

the brightness of detail is too low, making it difficult to see the
Chinese character target in the blue box of Fig. 5(b2). Also, the
results of the AoP-based denoising method have poor contrast
findings, making it difficult to clearly distinguish between targets
in the red box of Fig. 5(c1).

Accurate analysis of the transmission map of the scene is
of great significance in improving the imaging quality. In our
analysis, we observed that the transmission map obtained by
our method outperforms the one obtained by the DCP method
as shown in Fig. S2 in Supplement 1. Our method effectively
eliminates most of the scattering effects, corrects inaccurate
transmittance estimation, and yields a transmission map with
higher contrast from Figs. S2(b1)-S2(b4) in Supplement 1.
These improvements contribute to enhancing the final imaging
effect, resulting in a higher-quality image compared to existing
methods. These results also further validate the efficacy of our
proposed method without labeled data in accurately estimat-
ing the scene scattering information by leveraging polarization
features and a meticulously engineered network architecture.
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In conclusion, we have successfully combined the physi-
cal model of imaging with the network structure to propose
an unsupervised polarization de-scattering scheme. Because
the incorporation of polarization prior and imaging models
effectively guides and activates the neural networks to extract
features, the framework proposed in this paper can constrain the
training process without labeled data. Thus, the proposed MDPF
can recover targets in real time, providing enhanced adaptability
to the large-range scattering environments. In the actual scene,
the MDPF is capable of obtaining high-quality and clear images.
What is more, it can handle varying levels of haze and can iden-
tify the details of distant targets. This work demonstrates the
potential for deep learning methods combined with physical
models to drive progress in de-scattering research.

Funding. National Natural Science Foundation of China (61775050).
Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES

1. H. Hu, Y. Zhang, X. Li, et al., Opt. Lasers Eng. 133, 106152 (2020).
. B. Lin, X. Fan, and Z. Guo, Opt. Express 31, 3046 (2023).
. X. Fan, B. Lin, and Z. Guo, IEEE Trans. Intell. Transp. 25, 12762
(2024).
. K. Li, M. Qi, S. Zhuang, et al., Opt. Lett. 47, 4255 (2022).
. F. Wang, Y. Bian, H. Wang, et al., Light: Sci. Appl. 9, 77 (2020).
. B. L. McGlamery, Proc. SPIE 0208, 221 (1980).
. S. G. Narasimhan and S. K. Nayar, Int. J. Comput. Vision 48, 233
(2002).
8. K. He, J. Sun, and X. Tang, IEEE Trans. Pattern Anal. Mach. Intell.
35, 1397 (2013).
9. L. Shen, Y. Zhao, Q. Peng, et al., IEEE Trans. Multimedia 21, 1093
(2019).
10. F. C. MacKintosh, J. X. Zhu, D. J. Pine, et al., Phys. Rev. B 40, 9342
(1989).
11. T. Hu, F. Shen, K. Wang, et al., Atmosphere 10, 342 (2019).
12. F. Shen, B. Zhang, K. Guo, et al., IEEE Photonics J. 10, 3900212
(2018).
13. X. Li, J. Xu, L. Zhang, et al., Opt. Lett. 47, 2854 (2022).
14. D. Li, C. Xu, M. Zhang, et al., Biomed. Opt. Express 12, 2447 (2021).
15. G. Tremblay and G. Roy, Appl. Opt. 60, 1217 (2021).
16. Z. Li, N. B. Kovachki, K. Azizzadenesheli, et al., The 9th International
Conference on Learning Representations (ICLR-21) (2021).
17. A. Vaswani, N. M. Shazeer, N. Parmar, et al., “Attention is All You
Need,” arXiv (2017).
18. B. Lin, X. Fan, P. Peng, et al., Opt. Express 32, 511 (2024).
19. Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
20. H. Zhao, O. Gallo, I. Frosio, et al., IEEE Trans. Comput. Imaging 3,
47 (2017).
21. Y. J. Rao, Meas. Sci. Technol. 8, 355 (1997).
22. Z. Wang, A. C. Bovik, H. R. Sheikh, et al., IEEE Trans. Image
Process. 13, 600 (2004).
23. K. He, J. Sun, and X. Tang, |IEEE Trans. Pattern Anal. Mach. Intell.
33, 2341 (2011).
24. J. Liang, L. Ren, H. Ju, et al., Opt. Express 23, 26146 (2015).
25. B. Lin, W. Chen, X. Fan, et al., Opt. Laser Technol. 181, 111664
(2025).
26. H. Liu, W. Zhang, Y. Han, et al., IEEE Sens. J. 24, 27803 (2024).

w N

NoO s


https://doi.org/10.6084/m9.figshare.29006843
https://doi.org/10.6084/m9.figshare.29006843
https://doi.org/10.6084/m9.figshare.29006843
https://doi.org/10.1016/j.optlaseng.2020.106152
https://doi.org/10.1364/OE.479636
https://doi.org/10.1109/TITS.2024.3383405
https://doi.org/10.1364/OL.466191
https://doi.org/10.1038/s41377-020-0302-3
https://doi.org/10.1117/12.958279
https://doi.org/10.1023/A:1016328200723
https://doi.org/10.1109/TPAMI.2012.213
https://doi.org/10.1109/TMM.2018.2871955
https://doi.org/10.1103/PhysRevB.40.9342
https://doi.org/10.3390/atmos10060342
https://doi.org/10.1109/JPHOT.2017.2773476
https://doi.org/10.1364/OL.457964
https://doi.org/10.1364/BOE.414850
https://doi.org/10.1364/AO.413848
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1364/OE.507711
https://doi.org/10.1109/97.995823
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1088/0957-0233/8/4/002
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TPAMI.2010.168
https://doi.org/10.1364/OE.23.026146
https://doi.org/10.1016/j.optlastec.2024.111664
https://doi.org/10.1109/JSEN.2024.3429527

