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Ense-i6mA: Identification of DNA N6-Methyladenine
Sites Using XGB-RFE Feature Selection and

Ensemble Machine Learning
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Abstract—DNA N6-methyladenine (6mA) is an important epi-

Q1

5
genetic modification that plays a vital role in various cellular6
processes. Accurate identification of the 6mA sites is fundamental to7
elucidate the biological functions and mechanisms of modification.8
However, experimental methods for detecting 6mA sites are high-9
priced and time-consuming. In this study, we propose a novel com-10
putational method, called Ense-i6mA, to predict 6mA sites. Firstly,11
five encoding schemes, i.e., one-hot encoding, gcContent, Z-Curve,12
K-mer nucleotide frequency, and K-mer nucleotide frequency with13
gap, are employed to extract DNA sequence features. Secondly,14
eXtreme gradient boosting coupled with recursive feature elimina-15
tion is applied to remove noisy features for avoiding over-fitting,16
reducing computing time and complexity. Then, the best subset17
of features is fed into base-classifiers composed of Extra Trees,18
eXtreme Gradient Boosting, Light Gradient Boosting Machine,19
and Support Vector Machine. Finally, to minimize generalization20
errors, the prediction probabilities of the base-classifiers are ag-21
gregated by averaging for inferring the final 6mA sites results.22
We conduct experiments on two species, i.e., Arabidopsis thaliana23
and Drosophila melanogaster, to compare the performance of24
Ense-i6mA against the recent 6mA sites prediction methods. The25
experimental results demonstrate that the proposed Ense-i6mA26
achieves area under the receiver operating characteristic curve27
values of 0.967 and 0.968, accuracies of 91.4% and 92.0%, and28
Mathew’s correlation coefficient values of 0.829 and 0.842 on two29
benchmark datasets, respectively, and outperforms several existing30
state-of-the-art methods.31

Index Terms—DNA N6-methyladenine sites, sequence-based32
encoding, bioinformatics, feature selection, ensemble learning.33

I. INTRODUCTION34

DNA N6-methyladenine (6mA) refers to the modification of35

introducing a methyl (CH3) group to the sixth position of36

an adenine ring catalyzed by DNA methyltransferases [1], [2],37
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[3], [4]. 6mA is an important epigenetic modification that does 38

not change the DNA segment but could alter the role of DNA 39

molecules. It plays a crucial role in a wide variety of biological 40

processes, such as gene expression regulation, regulating gene 41

transcription, DNA repair and replication, cell division and dif- 42

ferentiation, and etc [2], [4], [5], [6], [7]. However, these biologi- 43

cal function of 6mA in eukaryotes, especially higher eukaryotes, 44

remain largely unclear due to the distribution patterns of 6mA are 45

rather species-specific which result in diverse functional roles 46

[8]. Locating genomic 6mA distributions is fundamental for 47

the elucidation of potential biological functions of DNA 6mA 48

modification. 49

Accurate identification of 6mA sites in the genome is the 50

most important step to facilitate the characterization of 6mA 51

distribution patterns and further functional analysis. To this 52

end, a number of experimental methods are applied to detect 53

6mA sites of DNA, e.g., methylated DNA immunoprecipitation 54

sequencing [9], liquid chromatography coupled with tandem 55

mass spectrometry [10], and single-molecule real-time sequenc- 56

ing [11]. However, these methods are time-consuming and 57

laborious. Due to the important of 6mA and the difficulty in 58

experimentally identifying 6mA sites, together with the fact that 59

a large amount of unannotated DNA sequences have quickly 60

accumulated, the development of computational methods for 61

the fast prediction of 6mA sites solely from DNA sequence has 62

become a hot topic in bioinformatics. 63

Extracting effective features from DNA sequences is consid- 64

ered the most important step in developing accurate computa- 65

tional methods to predict 6mA sites. During the recent years, 66

a series of computational methods have emerged for predict- 67

ing 6mA sites. According to feature attributes being extracted 68

from sequence, the features used by the existing identification 69

of 6mA sites methods can be roughly divided into three cat- 70

egories, i.e., physicochemical properties [12], [13], sequence 71

information [14], [15], and evolutionary information [16], [17]. 72

Most current methods, e.g., SpineNet-6mA [18], iDNA6mA 73

(5-step rule) [19], Deep6mA [20], LA6mA [21], AL6mA [21], 74

and I-DNAN6mA, solely utilize one-hot encoding (OHE) to 75

extract sequence information for predicting 6mA sites. Unlike 76

these methods, i6mA-vote [22] introduces one-hot encoding 77

method for dinucleotides (One-hot2) to extract sequence in- 78

formation for the first time. i6mA-DNC [23] uses dinucleotide 79

representation method to extract sequence information. To our 80
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knowledge, i6mA-Pred [24] is the first computational method81

of 6mA sites identification that uses chemical properties with82

respect to amino/keto bases, strong/weak hydrogen bond, and83

ring structures (RFHC), and position-specific nucleotide fre-84

quencies (PPNF) to obtain physicochemical properties and se-85

quence information in DNA sequence, respectively. Besides86

RFHC, i6mA-stack [25] also utilizes Dinucleotide Physico-87

chemical Properties (DPCP), Trinucleotide Physicochemical88

Properties (TPCP), and Electron-Ion-Interaction Pseudo Po-89

tentials of Nucleotides (EIIP), and one-hot encoding (OHE)90

to dig out physicochemical properties and sequence informa-91

tion, respectively. To extract evolutionary information from92

sequences, MM-6mAPred [16] uses a 1st-order Markov model93

(MM) that indicates the transition probability between adjacent94

nucleotides for identifying 6mA sites. In addition to choosing95

an appropriate feature extraction scheme, another key factor for96

success of 6mA sites identification is the choice of classification97

algorithms.98

Appropriate classification algorithms can speed up training99

and efficiently learn the relationship between features and labels.100

A wide variety of machine learning algorithms are used to101

predict 6mA sites, such as Support Vector Machine (SVM)102

[26], eXtreme Gradient Boosting (XGB) [27], Logistic Re-103

gression (LR) [28], Bagging [29], Random Forest (RF) [30],104

Fully-Connected Neural Networks (FCN) [31], Convolutional105

Neural Networks (CNN) [32], Bidirectional Long Short-Term106

Memory Recurrent Neural Networks (BiLSTM) [33], and etc.107

i6mA-Pred [24] combines the SVM classifier with RFHC and108

PPNF to learn 6mA sites prediction model. It is observed that109

i6mA-Pred reaches an accuracy of 83.13% in the jackknife test110

on the rice genome. Unlike i6mA-Pred, i6mA-DNC [23] and111

iDNA6mA (5-step rule) [19] use CNN and FCN to predict 6mA112

sites. i6mA-DNC and iDNA6mA (5-step rule) obtain 86.64%113

and 88.60% of accuracy on the rice genome. In Deep6mA [20],114

OHE is fed into an ensemble of three neural network units, i.e.,115

CNN, BiLSTM, and FCN, to train the prediction model of 6mA116

sites and Deep6mA accurately predicts 6mA sites. In LA6mA117

and AL6mA [21], BiLSTM and self-attention mechanism are118

used to capture discriminative information from OHE for pre-119

dicting 6mA sites. The accuracies of LA6mA and AL6mA reach120

91.5% and 87.8%, and 90.9% and 88.4% in the Drosophila121

melanogaster and Arabidopsis thaliana genome, respectively.122

Nevertheless, despite the efficiency and accuracy achieved, the123

running speed and performance of 6mA sites prediction methods124

remain room for further improvements.125

(i) The influence of DNA sequence features on 6mA sites126

prediction is not fully elucidated. It is still improved in 6mA127

sites prediction by extracting features based on DNA sequences.128

(ii) By revisiting existing 6mA sites identification methods, it129

was found that all of them employ fused feature generated in130

series with multiple single-view features directly as input of the131

machine learning algorithms. Although the usage of single-view132

feature or fused multi-view features can fully represent the133

information contained in the DNA sequence, in most of the cases134

it introduces redundant or irrelevant information inevitably that135

will seriously reduce the efficiency of 6mA prediction model.136

Hence, eliminating noise in the feature is also an important137

step in the process of 6mA sites identification. (iii) Facing the 138

avalanche of new DNA sequences produced in the post-genomic 139

era, choosing an effective classifier is also a major challenge for 140

researchers. 141

To address the important issues mentioned above, in this 142

study, we propose a novel 6mA sites prediction method, termed 143

Ense-i6mA. Firstly, two benchmark datasets are collected and 144

each DNA sequence is encoded into OHE, K-mer nucleotide 145

frequency (KNF) [34], gcContent [35], [36], Z-Curve [37], 146

[38], and K-mer nucleotide frequency with gaps (KNFG) [15]. 147

Compared to the single-view feature, the fusion feature can 148

obtain more comprehensive DNA information. Secondly, the 149

XGB coupled with recursive feature elimination (XGB-RFE) 150

is applied to 6mA sites prediction to remove noisy features for 151

avoiding over-fitting, reducing computing time and complexity. 152

Finally, an ensemble classifier consisting of two stages is used 153

as the final classifier. In the first phase, four base-classifiers, 154

i.e., Extra Trees (ET), SVM, XGB, and Light Gradient Boost- 155

ing Machine (LGBM), are selected from thirteen machine- 156

learning algorithms for the first time. In the second phase, to 157

minimize generalization errors, the prediction probabilities of 158

the base-classifiers are aggregated by averaging for inferring 159

the final 6mA sites results. We conduct experiments on two 160

benchmark datasets to compare the performance of Ense-i6mA 161

against the recent 6mA sites prediction methods. Benchmarking 162

results demonstrate that Ense-i6mA yields substantial perfor- 163

mance achieve over previous methods, highlighting its promis- 164

ing potential in solving the 6mA sites prediction problem. Fi- 165

nally, based on the proposed Ense-i6mA, we implement a new 166

standalone-version predictor for predicting 6mA sites, which is 167

freely available at https://github.com/XueQiangFan/Ense-i6mA 168

for academic use. 169

II. MATERIALS AND METHODS 170

A. Benchmark Datasets 171

To evaluate the performance of our proposed I-DNAN6mA, 172

in this study, we chose two well-known datasets contained the 173

DNA 6mA sites data for two species i.e., Arabidopsis thaliana 174

and Drosophila melanogaster, which are previously employed 175

to assess the 6mA sites prediction models in the recently pub- 176

lished studies [21], [34] as the benchmark datasets. These raw 177

DNA data of Arabidopsis thaliana and Drosophila melanogaster 178

are collected from the PacBio public database [35]. For each 179

organism, Zhang et al. randomly divides it into the training 180

and independent testing subset at a ratio of 9:1. The number 181

of positive and negative samples is the same for each subset. For 182

more detailed information on the dataset construction, please 183

refer to [21], [34]. All the datasets can be downloaded from 184

https://github.com/XueQiangFan/Ense-i6mA. Finally, the num- 185

ber of samples included in each dataset is shown in Supplemental 186

Table S1. 187

B. Feature Extraction 188

Extracting effective features from DNA sequences which 189

contain significant discriminatory information is considered the 190
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most important step in developing accurate computational meth-191

ods to predict 6mA sites. To encode the DNA sequences into192

vectors recognized by machine-learning, given a DNA sequence193

with 41-nt, five encoding schemes, i.e., OHE, gcContent [36],194

[37], Z-Curve [38], [39], KNF [40], and KNFG [15], are used195

to extract DNA sequence features:196
� Every DNA sequence transformed into a 41 × 4 matrix197

(total 164 elements) after one-hot coding.198
� Generally, DNAs with high gcContent scores is more stable199

than DNA with low gcContent scores. gcContent calcu-200

lated by:201

gcContent =

∑L
i C +

∑L
i G∑L

i A+
∑L

i C +
∑L

i G+
∑L

i T
(1)

� Z-Curve theory is often used in genomic sequence analy-202

sis. Each sequence is represented by three elements. It is203

defined as following:204

Z− Curve = [x, y, z] (2)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x =

(∑L
i A+

∑L
i G

)
−
(∑L

i C +
∑L

i T
)

y =
(∑L

i A+
∑L

i C
)
−
(∑L

i G+
∑L

i T
)

z =
(∑L

i A+
∑L

i T
)
−
(∑L

i G+
∑L

i C
) (3)

205
� KNF (total 84 elements), which reflects the sequence back-206

ground differences between the 6mA sites and non-6mA207

sites, used to calculate the frequencies of adjacent nu-208

cleotides in the DNA sequence. In this study, K values209

are set 1, 2, and 3.210
� KNFG (total 720 elements) generated by PyFeat tool [15],211

a python-based feature generation tool for DNA, RNA and212

protein sequences.213

The detail steps of generating the above descriptors are de-214

scribed in Supplementary Text S1.215

C. Feature Selection Using XGB-RFE216

A pre-requisite in developing powerful computational models217

for 6mA sites prediction is to extract sufficient discriminative218

features to construct accurate models. By visiting existing 6mA219

sites prediction methods, most of the methods use a variety220

of coding strategies to generate more DNA features that in221

most of the cases introduce redundant or irrelevant information222

inevitably, and at the same time produce feature sparsity prob-223

lem. Therefore, it will eventually result in over-fitting issue and224

reducing the generalization capacity of the prediction model.225

Feature selection which can enhance the performance of the226

prediction by selecting optimum features, is one of the effective227

techniques in diverse domains, e.g., pattern recognition, machine228

learning, and bioinformatics, to remove the noisy information229

from the actual data.230

To find out which features are most suitable to identify 6mA231

sites, the eXtreme Gradient Boosting (XGB), coupled with232

recursive feature elimination (RFE) algorithm, is employed to233

score different meta features and select the optimal meta features234

to construct the best subset of features (BFS). In this study, XGB 235

and RFE (XGB-RFE) are combined for the first time in the field 236

of 6mA sites identification. Specifically, BFS can be constructed 237

with the following three steps [27], [41]: 238

Step 1: Sequence-based Feature Encoding 239

Given a DNA sequence with 41 nucleotides, five encoding 240

schemes, i.e., ONE, gcContent, Z-Curve, KNF, and KNFG, are 241

used to encode 164, 1, 3, 84, and 720-dimensional vectors, 242

respectively. The five types of features are fused to engender a 243

new feature group, which consists of a total of 972-dimensional 244

features for each sequence. The fused feature groups and labels 245

for all sequence constitute a sample dataset D: 246

D =
{(

ξ1, η1
)
,
(
ξ2, η2

)
, . . . ,

(
ξi, ηi

)
, . . . , (ξn, ηn)

}
(4)

where n is the total number of samples; the element 247(
ξi, ηi

)
=

[
xi
1, x

i
2, . . . , x

i
j , . . . x

i
972, y

i
]

(5)

means that the i-th DNA sequence contains 972 features and a 248

label yi. 249

Step 2: Feature Importance Ranking and Elimination of Junk 250

Features 251

A tree ensemble model, i.e., XGB, uses M additive functions 252

to predict the 6mA sites. 253

ỹi =

M∑
m=1

fm

(
ξi
)

(6)

where fm(ξi) denotes the importance score of i-th feature 254

vector on m-th tree. Thus, the objective function can be expressed 255

as: 256

O (∅) =
∑
i

o
(
ỹi, yi

)
+ γ (7)

where o(ỹi, yi)means the loss between the predicted and ground 257

truth values; γ =
∑

m ω(fm), ω(·) controls the complexity of 258

the model. Then, the objective function becomes as follows after 259

one iteration generate a tree: 260

O(∅)(t) =
∑
i

o
[(

ỹi(t−1) + f(t)
(
ξi
))

, yi
]
+ γ (8)

where ỹi(t−1) + f(t)(ξ
i) represents the predicted value of t-th 261

iteration. Assuming that the m-1-th tree weight is known while 262

producing the m-th tree. 263

O(t) =

T∑
i=1

[
o
(
ỹi(t−1), y

i
)
+ δif(t)

(
ξi
)
+

1

2
μif

2
(t)

(
ξi
)]

+ γ

(9)
where O(t) is the objective function; δi and μi mean the first- 264

and second-order statistics of the loss function, respectively. 265

Obtaining the importance ranking of features, the lowest scoring 266

features are eliminated using RFE from the current feature space 267

and the remaining features are used as the feature dataset D∗
268

for the next iteration. 269

Step 3: Iterative Optimization 270

Repeating step 2, the final BFS contained the 80-dimensional 271

most important features is selected from the fused feature group 272

for each sequence. 273
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D. Architecture of Ense-i6mA274

Machine learning, especially the ensemble learning has re-275

cently been proven to be a fascinating algorithm and successfully276

applied in a wide variety of computational bioinformatics do-277

mains, such as DNA-binding protein [42], ncRNA-protein inter-278

actions [43], protein-protein interactions [44], and etc. Ensemble279

learning combines multiple classifiers and uses a certain rule to280

integrate a series of learner results to obtain better results than281

the single classifier. In this study, an ensemble classifier, termed282

Ense-i6mA, is established to predict 6mA sites. Framework of283

Ense-i6mA mainly consists of two-phase, including the first284

stage base-classifier learning and the second stage integrated285

predicted probabilities.286

Considering the different feature learning spaces and class287

recognition capabilities of different machine learning algo-288

rithms, this study expects to choose excellent base classifiers289

to train the prediction model for identifying 6mA sites. In the290

first phase, thirteen machine-learning algorithms, Logistic Re-291

gression (LR), K-nearest neighbor (KNN), decision tree (DT),292

Gaussian NB (NB), Bagging, Random Forest (RF), AdaBoost293

(AB), Gradient Boosting (GB), Linear Discriminant Analysis294

(LDA), Extra Trees (ET), eXtreme Gradient Boosting (XGB),295

Light Gradient Boosting Machine (LGBM), and Support Vector296

Machine (SVM), are investigated by contrast experiments to297

select base-classifier. These machine learning-based classifiers298

are implemented and tuned using the Scikit-learn Python li-299

brary [45]. By comparing the prediction performance of thirteen300

machine-learning algorithms on the derived data set BFS of301

the training data set over five-fold cross-validation tests, SVM,302

XGB, LGBM, and ET are used as base-classifiers. In the second303

phase, to minimize generalization errors, the prediction prob-304

abilities of the base-classifiers are aggregated by averaging to305

obtain the final 6mA sites probability. Ense-i6mA can mine the306

essential discrimination features that characterize DNA 6mA307

sites through ensemble learning, and its prediction performance308

is superior to that of the individual classifier. The detailed flow309

of the Ense-i6mA algorithm is presented in the three steps in310

Algorithm 1.311

E. Model Construction312

In this study, a novel method is proposed, called Ense-i6mA,313

for identifying 6mA sites. The flow chart is shown in Fig. 1. All314

experiments are performed on Windows Server 10 Inter Core315

i7-9750H CPU @2.60 Hz, 16.0 GB of RAM, and Python 3.7316

programming. The detailed steps of Ense-i6mA are described317

as follows:318

1) Collecting two benchmark 6mA sites datasets from previ-319

ous literatures.320

2) Five encoding schemes, i.e., OHE, KNF, Z-Curve, gc-321

Content, and KNFG, are applied to extract DNA feature322

for given DNA sequence with-41nts. Experimental results323

show that the fused feature could extract complementary324

and representative information compared with the single325

feature.326

3) XGB-RFE is utilized to remove noisy features for avoid-327

ing over-fitting, speed up training, reducing computing328

Fig. 1. The overall flow for identifying 6mA sites by Ense-i6mA. (A) Data
preparation. (B) Feature extraction. (C) XGB-RFE feature selection. (D) Model
construction.

Algorithm 1: Ense-i6mA Algorithm.
Input: Dataset D = {(X1, Y1), (X2, Y2), . . .,(Xn, Yn)};

Feature selection FS = XGB-RFE;
Base-classifiers c1=SVM, c2=XGB, c3=LGBM,
c4=ET.

Output: ensemble classifier C
1: D∗ =�;
2: Step 1: construct the best subset of features
3: for i = 1, 2, 3,. . ., n do
4: X

′
i= FS(Xi, Yi);

5: end for
6: D∗= {(X

′
1, Y1), (X

′
2, Y2), . . .,(X

′
n, Yn)};

7: Step 2: train the base-classifiers
8: for t = 1, 2, 3, 4 do
9: ht=ct(D∗);

10: end for
11: H = {h1(x), h2(x), h3(x), h4(x)};
12: Step 3: aggregate results by averaging
13: C =

∑4
t ht/4;

14: return C

time and complexity. The performance of XGB-RFE with 329

other feature selection methods, i.e., Principal Component 330

Analysis (PCA) [46], SVM-RFE [47], LR-RFE [48], RF- 331

RFE [49], and AB-RFE, is also evaluated by Sn, Sp, ACC, 332

MCC, and auROC. 333

4) SVM, XGB, LGBM, and ET, algorithms are stacked to 334

build up base-classifiers. The BFS generated by steps (3) 335

are fed into the base-classifiers and the output the 6mA 336
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site probabilities of the base-classifiers are aggregated by337

averaging for concluding the final results.338

5) The effectiveness of Ense-i6mA is validated on two bench-339

mark datasets. The performance of Ense-i6mA with other340

compared methods, i.e., SVM, XGB, LGBM, ET, GB,341

DeepM6A, i6mA-DNC, iDNA6mA, 3-mer-LR, LA6mA,342

and AL6mA, is assessed on the independent testing343

datasets using Sn, Sp, ACC, MCC, and auROC.344

F. Evaluation Metrics345

In this study, the performance of the proposed method is346

assessed by using the following four classical evaluation indexes347

of binary classification, namely sensitivity (Sn), specificity (Sp),348

accuracy (ACC) and Mathew’s correlation coefficient (MCC),349

which are respectively expressed as follows:350

Sn = 1− α+
−

α+
(10)

Sp = 1− α−
+

α− (11)

ACC = 1− α+
− + α−

+

α+ + α− (12)

MCC =
1− α+

− +α−
+

α++α−√(
1 +

α−
+−α+

−
α+

)(
1 +

α+
− −α−

+

α+

) (13)

where α+ (i.e., true positive) is the total number of 6mA sites,351

α+
− is the number of 6mA sites incorrectly predicted as non-6mA352

sites, α− is the total number of non-6mA sites, α−
+ is the number353

of non-6mA sites incorrectly predicted as 6mA sites. MCC354

measures the correlation between the expected class and the355

predicted class. The MCC measure ranges from −1 to 1, and the356

other three evaluation measures range between 0 to 1. Further-357

more, this study also uses the receiver operating characteristic358

(ROC) curve evaluate the performance of the proposed method.359

The area under the ROC curve (auROC) is a comprehensive360

indicator of the performance quality of a binary classifier. The361

value 0.5 of auROC is equivalent to random prediction, while 1362

of auROC means a perfect one.363

III. RESULTS AND DISCUSSIONS364

A Performance Comparison of Different Features365

In this section, the discriminative performances of the five366

sequence-based features and one combination feature of them,367

i.e., OHE, KNF, Z-Curve, gcContent, KNFG, and the fusion368

feature, are investigated. Three commonly individual machine369

learning algorithms, i.e., Logistic Regression (LR), K-nearest370

neighbor (KNN), and Random Forest (RF), are used to assess371

each feature by performing five-fold cross-validation tests on372

the training datasets of Arabidopsis thaliana and Drosophila373

melanogaster, respectively. Among them, the number of LR374

iterations is 500, the neighbors of the KNN method are set as375

7, and RF sets the number of base decision trees to 500 and376

the maximum learning depth to 10. Table I summarizes the377

discriminative average performance results of these features. 378

Supplemental Figs. S1 and S2 demonstrate ROC curves of LR, 379

KNN, and RF algorithms with different features on A.thaliana 380

and D.melanogaster, respectively. 381

From Table I and Figs. S1 and S2, we can easily find that 382

the fusion feature consistently outperforms other five individ- 383

ual features, i.e., OHE, KNF, Z-Curve, gcContent, and KNFG 384

concerning the five evaluation indexes. Taking the results of 385

the LR algorithm on training dataset A.thaliana as example, 386

the Sn, Sp, ACC, MCC, and auROC of the fusion feature are 387

0.871, 0.876, 0.873, 0.746, and 0.939, respectively, which are 388

2.60%, 4.16%, 3.31%, 7.96%, and 3.00% higher than those of 389

the second-best feature, i.e., OHE, respectively. Furthermore, 390

Table I also provides performance comparison of different fea- 391

tures in terms of Sn under the fixed Sp (i.e., 0.8 and 0.9). It can 392

be also observed that the fusion feature performed best under 393

fixed Sp in most cases, followed by OHE. These experimental 394

results demonstrate that the five single-view features contain 395

complementary information. 396

B. Performance Comparison of Different Feature Selection 397

Methods 398

Choosing one appropriate feature selection method can re- 399

move the noise while reducing the feature dimension and select- 400

ing the optimal features. In this study, the discriminative perfor- 401

mances of six feature selection methods, i.e., PCA, SVM-RFE, 402

LR-RFE, RF-RFE, AB-RFE, and XGB-FRE, are investigated 403

by observing the performances of LR, KNN, and RF algorithms 404

again on training datasets over five-fold cross-validation tests. 405

The optimal features of these feature selection methods with 406

default parameters are set to 100. The prediction results are 407

shown in Table II. Supplemental Figs. S3 and S4 illustrate 408

ROC curves of LR, KNN, and RF algorithms with different 409

feature selection methods on the training datasets over five-fold 410

cross-validation tests, respectively. 411

Table II shows that the performance of XGB-RFE is superior 412

to that of the other five feature selection methods. Specifically, 413

XGB-RFE with LR, KNN, and RF gains the highest MCC 414

and auROC values, which are two overall measurements of 415

the quality of the binary classification, among all feature se- 416

lection methods on each training dataset. Taking the results of 417

XGB-RFE with KNN on the training dataset of A.thaliana as 418

an example, XGB-RFE achieves 127.96% and 32.11%, 7.14% 419

and 1.96%, 8.85% and 1.85%, 7.91% and 2.40%, and 15.21% 420

and 4.45% average enhancements of MCC and auROC values, 421

respectively, compared to the other five feature selection meth- 422

ods, i.e., PCA, SVM-RFE, LR-RFE, RF-RFE, and AB-RFE. 423

In addition, XGB-RFE shares the highest Sn, Sp, ACC, Sn 424

(Sp = 0.8), and Sn (Sp = 0.9) values. The numerous experi- 425

mental results shown in Table II and Figs. S3 and S4 indicate 426

that the performance is indeed enhanced after applying feature 427

selection. 428

C. Selection of Base Classifiers 429

To determine the most suitable base classifiers, we evaluate 430

the performance of 13 machine learning classifiers (i.e., LR, 431
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT FEATURES ON THE TRAINING DATASETS OVER FIVE-FOLD CROSS-VALIDATION TESTS USING THE LR, KNN, AND RF

ALGORITHMS

KNN, RF, Decision Tree (DT), Gaussian NB (NB), Bagging,432

AdaBoost (AB), Gradient Boosting (GB), Linear Discriminant433

Analysis (LDA), Extra Trees (ET), eXtreme Gradient Boost-434

ing (XGB), Light Gradient Boosting Machine (LGBM), and435

Support Vector Machine (SVM)) on the training datasets over436

five-fold cross-validation tests. The parameter of 13 machine437

learning classifiers are as follows, i.e., the number of iterations438

of LR, XGB, and LGBM is 500; the closest neighbor of KNN439

is 5; ET and RF set the number of base decision trees to 500440

and the maximum learning depth to 10; SVM uses the RBF441

kernel function; the ‘n_estimators’ of AB, Bagging, AB, GB,442

XGB, and LGBM are all set as 500; DT, LDA, and NB use443

default parameters. These classifiers are implemented using444

the Scikit-learn Python library [45]. Table III demonstrates the445

prediction results of 13 classifiers on the training datasets over 446

five-fold cross-validation tests. The ROC curves can be seen in 447

Fig. 2. 448

According to the MCC and auROC values listed in Table III 449

and the ROC curves presented in Fig. 2, we can find that the 450

five top-ranked classifiers are ET, XGB, LGBM, SVM, and 451

GB, respectively. Concretely, the ET acts as the best performer 452

followed by XGB, LGBM, SVM, and GB. ET is the only 453

classifier to obtain MCC > 0.78 and auROC > 0.95 on both 454

training datasets. It is noted that LGBM gains comparable 455

performance to XGB in terms of MCC and auROC values. 456

The MCC and auROC values of XGB and LGBM classifiers 457

both exceed 0.76 and 0.947, respectively. Furthermore, we 458

observe that the MCC and auROC values of SVM are 1.94% 459
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT FEATURE SELECTION METHODS ON THE TRAINING DATASETS OVER FIVE-FOLD CROSS-VALIDATION TESTS USING

THE LR, KNN, AND RF ALGORITHM

and 0.63%, 2.21% and 0.58% average lower than, respectively,460

the corresponding values achieved by XGB and LGBM on461

both training datasets. By revisiting Table III, it is apparent462

that the Sp values reached by these five classifiers are largely463

more than the Sn values they achieve. The reason for this is464

that they predict too many false negatives. Thus, ET, XGB,465

LGBM, SVM, and GB are provisionally selected as the base466

classifiers.467

To further analyze the combined performance of these 13 ma- 468

chine learning classifiers, we rank these methods using the sum 469

of Z-scores of all evaluation indexes. Fig. 3(a) and (b) show the 470

comprehensive performance of all methods in the A.thaliana and 471

D.melanogaster genome, respectively. It can be found that the 472

comprehensive performance of ET is the best among all methods 473

in both A.thaliana and D.melanogaster genomes, followed by 474

XGB, LGBM, SVM, and GB. 475
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MACHINE LEARNING ALGORITHMS ON THE TRAINING DATASETS OVER FIVE-FOLD CROSS-VALIDATION TESTS

Fig. 2. ROC curves of different machine learning classifiers on the training datasets over five-fold cross-validation tests: (a) A.thaliana and (b) D.melanogaster.
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Fig. 3. Ranking of various classifiers in the global performance evaluation. (a) and (b) are ranked according to the sum of the Z-scores of all the evaluation
indexes on the A.thaliana and D.melanogaster, respectively.

D. Integrated Classifiers With Averaging Strategy476

To minimize the generalization error and enhance the477

performance of 6mA prediction, on the basis of subsection478

‘Selection of base classifiers’, we empirically examine the479

predictive performance of single and ensemble classifiers480

on both training datasets over five-fold cross-validation481

tests. In the present subsection, two ensemble learning482

schemes, i.e., averaging and voting strategies, are considered483

to combine five base classifiers, i.e., ET, XGB, LGBM,484

SVM, and GB. Note that, the five individual classifiers485

should be first combined according to the priority of their486

overall performance, then each combiner is integrated by487

averaging or voting strategies. Hence, here, the performance488

of six integrated classifiers, i.e., ET+XGB+Averaging,489

ET+XGB+LGBM+Voting, ET+XGB+LGBM+Averaging,490

ET+XGB+LGBM+SVM+Averaging,491

ET+XGB+LGBM+SVM+GB+Voting, and492

ET+XGB+LGBM+SVM+GB+Averaging, are researched.493

For ease of description, these six integrated classifiers mentioned494

above are named Averaging2, Voting3, Averaging3, Averaging4,495

Voting5, and Averaging5, respectively. Table IV summarizes496

the compared results and Supplemental Fig. S5 displays the497

ROC curves of different classifiers.498

From Table IV and Fig. S5, it is clear that the performance of499

Averaging4 is superior to that of the other single and integrated500

classifiers. In detail, by observing Table IV, we can easily find501

that, out of four averaging strategy-based classifiers, Averaging4502

acts as the best performer followed by Averaging2, Averaging3,503

and Averaging5. For example, compared with Averaging2, the504

second-best classifier from the viewpoint of ACC, MCC, and505

auROC values, Averaging4 achieves average 0.28%, 0.56%, and506

0.52% improvements in ACC, MCC, and auROC values on both507

training datasets. In addition, among two voting strategy-based508

classifiers, i.e., Voting3 and Voting5, the classifier Voting3 shows509

excellent prediction performance. For the classifier Voting3, 510

the prediction accuracy value is 0.894, MCC value is 0.793, 511

and auROC values is 0.954. Although the overall prediction 512

performance of the Voting5 is slightly lower than that of Vot- 513

ing3, Voting5 achieves a better Sn value on the training dataset 514

Drosophila melanogaster. It has not escaped from our notice 515

that the performance of the averaging strategy-based classifiers 516

is consistently higher than that of the voting strategy-based 517

classifiers. Meanwhile, Averaging4 achieves the highest MCC 518

and auROC values. However, when base-classifier GB is added 519

to Averaging4, the overall prediction performance of 6mA sites 520

(i.e., Voting5 and Averaging5) drops. We also rank the methods 521

by using the sum of the Z-scores of global metrics to analyze 522

the comprehensive performance of various 6mA sites predic- 523

tion methods. It can be found that Averaging4 has the best 524

comprehensive performance in both A.thaliana Fig. 4(a) and D. 525

melanogaster Fig. 4(b) genomes. Therefore, Averaging4, i.e., 526

ET+XGB+LGBM+SVM+Averaging, is employed as the final 527

model of Ense-i6mA. 528

E. Comparison With Existing 6mA Sites Identification 529

Methods 530

The purpose of this section is to experimentally demonstrate 531

the efficacy of the proposed Ense-i6mA by comparing it with 532

other recently state-of-the-art 6mA sites prediction methods on 533

both independent testing datasets, including DeepM6A [34], 534

i6mA-DNC [23], iDNA6mA (5-step rule) [19], 3-mer-LR [21], 535

LA6mA, and AL6mA [21]. For an objective and fair com- 536

parison, all the methods use the same training datasets and 537

independent testing datasets. The attributes of the feature used by 538

the existing methods mentioned in the introduction section can 539

be generally categorized into three major groups, i.e., physico- 540

chemical properties, sequence information, and evolutionary in- 541

formation. Here, DeepM6A, iDNA6mA (5-step rule), LA6mA, 542
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE TRAINING DATASETS OVER FIVE-FOLD CROSS-VALIDATION TESTS

Fig. 4. Ranking of the methods in the global performance evaluation. (a) and (b) are ranked according to the sum of the Z-scores of all the evaluation metrics on
the A.thaliana and D.melanogaster, respectively.

and AL6mA use OHE to identify 6mA sites; i6mA-DNC and543

3-mer-LR predict 6mA sites in the DNA sequences based544

on dinucleotide components and 3-mer nucleotide frequency,545

respectively. Unlike these methods, Ense-i6mA incorporates546

OHE, KNF, Z-Curve, gcContent, KNFG, and XGB-RFE feature547

selection method for identifying 6mA sites. Table V and Fig. S6548

summarize the performance compared results of the seven 6mA 549

sites prediction methods on both independent testing datasets. 550

As described in Table V, we can see that DeepM6A has 551

better prediction results for the 6mA sites in DNA for the 552

existing prediction methods. The Sn, Sp, ACC, MCC, and 553

auROC values are 0.894, 0.931,0.826, and 0.966, 0.901, 0.939, 554
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ENSE-I6MA AND OTHER EXISTING METHODS FOR IDENTIFYING 6MA SITES ON THE INDEPENDENT

TESTING DATASETS

0.920,0.841, and 0.969, respectively, on the independent testing555

datasets Arabidopsis thaliana and Drosophila melanogaster. As556

expected, the 3-mer-LR, which is developed based on individual557

classifier LR algorithm, gained the lowest prediction perfor-558

mance in terms of five evaluation indexes. However, the novel559

method Ense-i6mA proposed in this study achieves comparable560

recognition performance as DeepM6A, and even superior to561

DeepM6A in certain evaluation indices. Taking the results of562

the proposed Ense-i6mA methods on the independent testing563

dataset Arabidopsis thaliana as an example, Ense-i6mA achieves564

the highest Sp, ACC, MCC, auROC values except Sn. Especially,565

the MCC and auROC, which are two most important indexes to566

assess the overall performance of the 6mA prediction methods,567

of Ense-i6mA are 0.829 and 0.967, which are 0.36% and 0.10%,568

9.51% and 2.44%, 13.10% and 3.76%, 108.82% and 25.10%,569

1.47% and 0.52%, and 7.94% and 2.33% higher than DeepM6A,570

i6mA-DNC, iDNA6mA (5-step rule), 3-mer-LR, LA6mA, and571

AL6mA, respectively. Furthermore, Table V also provides per-572

formance comparison of different methods in terms of Sn under573

the fixed Sp (i.e., 0.8 and 0.9). For two independent testing574

datasets, it is easy to find that DeepM6A performs best under575

fixed Sp followed by Ense-i6mA.576

By revisiting Table V, it is noteworthy that although five577

deep learning-based methods, i.e., DeepM6A, i6mA-DNC,578

iDNA6mA (5-step rule), LA6mA, and AL6mA, obtain good579

performance, the proposed Ense-i6mA is the solely ensemble580

learning-based approach that achieves Sn>0.899, ACC>0.914,581

MCC>0.829 and auROC>0.967 on both model organisms. In582

addition, we also observe that DeepM6A, iDNA6mA (5-step583

rule), LA6mA and AL6mA, and i6mA-DNC use 164 = (41584

× 4) and 640 = (40 × 16) meta-features, respectively, whereas585

the proposed Ense-i6mA only utilizes 80 meta-features (48.78%586

of DeepM6A, iDNA6mA (5-step rule), LA6mA and AL6mA,587

and 12.5% of i6mA-DNC). This may portend that Ense-i6mA588

can achieve performance comparable to or even higher than589

DeepM6A with less computation time and complexity. In sum- 590

mary, these results further validate the effectiveness and robust- 591

ness of Ense-i6mA, indicating that Ense-i6mA is a powerful 592

prediction method. 593

IV. CONCLUSION 594

Accurate identification of 6mA sites in DNA is crucial to 595

elucidate the function of 6mA epigenetic modification. In this 596

study, a new calculational method, called Ense-i6mA, is im- 597

plemented for predicting 6mA sites in DNA. Experimental 598

results have demonstrated that Ense-i6mA outperforms other 599

existing state-of-the-art prediction methods, i.e., DeepM6A, 600

i6mA-DNC, iDNA6mA (5-step rule), 3-mer-LR, LA6mA, and 601

AL6mA. The superior performance of the proposed Ense-i6mA 602

is primarily due to the following three aspects. Firstly, five 603

discriminative feature sources, i.e., OHE, KNF, Z-Curve, gc- 604

Content, and KNFG, are employed to extract more discrimi- 605

native information from the data sets. Secondly, XGB-RFE is 606

employed to remove noisy features while reducing computing 607

time and complexity. Finally, the proposed Ense-i6mA leverages 608

ensemble learning to further improve predictive performance of 609

6mA sites. 610

Despite its good performance, the proposed Ense-i6mA still 611

has potential disadvantages and room for improvement. For 612

instance, the feature representations used in this study should 613

hardly adequately represent the identifiability of the 6mA sites 614

data. Our further research work comprises the following four 615

directions to further enhance the prediction efficacy of 6mA 616

sites: (1) designing high discriminative feature source; (2) de- 617

veloping an excellent feature selection tool; (3) designing a 618

more accurate method by combining Ense-i6mA and other 619

state-of-the-art 6mA sites prediction methods; (4) establishing 620

a user-friendly web-server to help potential researchers and 621

end-users of Ense-i6mA. Finally, we believe that Ense-i6mA 622
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will be exploited as a useful tool to accelerate the progress of623

DNA function detection and understanding.624
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