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A B S T R A C T   

Polarization scattering imaging (PSI) is an extremely challenging problem due to the fact that scattering media 
can lead to severe degradation of the object information. In this paper, we propose a novel high-performance 
computational method, the PSI based on a well-designed local-global context polarization feature learning 
(LGCPFL) framework, named PSI-LGCPFL, to efficiently retrieve the target’s information. In the LGCPFL 
framework, the dilated convolutional neural network and Swin Transformer are concurrently introduced to 
capture local polarization feature information and long-range polarization dependencies in the polarization 
scattering images, respectively. We in-depth investigate the relationship between the geometry of target, the 
scattering imaging distance, and the constituent materials and the PSI quality. The performance of our proposed 
PSI-LGCPFL is benchmarked and evaluated on three testing datasets established in real-life scenarios, i.e., STR24, 
DIS50 and MAT18, which cover untrained target’s geometry, various untrained targets lying in untrained dis-
tances between scattering medium and targets, and diverse untrained target’s materials with different back-
ground materials, respectively. The experimental results demonstrate that the proposed PSI-LGCPFL has a 
superior performance on retrieving the target’s information with high-generalization abilities and reasonably 
inferring speed, and outperforms several existing state-of-the-art methods. To our knowledge, PSI-LGCPFL is the 
first approach to achieve the PSI by polarization characteristics and a deep learning model with Swin Trans-
former. It also highlights the prospect of accurately reconstruction of remote sensing target’s information in 
scattering medium via using polarization information and deep learning   

1. Introduction 

Imaging through scattering medium plays an important role in a 
wide variety of applications, such as ocean exploration [1], remote 
sensing observation [2], biomedical imaging [3], autonomous driving 
[4], and other fields [5–8]. Hence, it is invaluable and of great interest to 
achieve clear vision in scattering media. However, when light travels 
through the scattering media, e.g., haze [9], turbid water [10,11], bio-
logical tissues [3], and gross glass [12], it will result in severe degra-
dation of the target information, which will subsequently lead to target 
detection failure [13]. Traditionally, target information of interest can 
be reconstructed by the classical optical experimental methods, i.e., 
optical coherence tomography [14], wavefront shaping [15], correlated 
imaging [16], transmission matrices [17], and point spread function 
[18]. Nevertheless, these techniques are cost-intensive, laborious, and 
time-consuming. In view of this situation, it is highly desirable and 
important to develop cost-effective computational methods for 

high-performance and accurate imaging through scattering media. 
Over the past decades, tremendous efforts have been made to un-

cover the intrinsic physical mechanism of imaging through scattering 
medium. In particular, polarization imaging has been proven to be a 
remarkably effective approach for target reconstruction in scattering 
media, depending on the multidimensional characteristics of the po-
larization information [13,19-22]. Up until now, a series of polarization 
information-assisted imaging methods have been developed. Generally 
speaking, these existing methods can be broadly classified into two 
categories, which are physical model-based and deep-learning-based 
methods, respectively. In the early stage, physical model-based 
methods, such as polarization difference imaging [10,23,24], domi-
nated in the field of imaging in scattering media. These physical 
model-based methods generally concentrate on the accurate estimation 
of medium transmission. For instance, in Schechner et al.’s method [10], 
two orthogonal polarization images, which are taken in the same scene, 
are employed to realize the underwater image reconstruction. In Zhao et 
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al.’s method [25], the genetic algorithm is applied to scan the degree of 
linear polarization (DoLP) of the target light and the backscattered light 
to obtain the target light images with the highest contrast. In Hu et al.’s 
method [26], Stokes parameters, which are calculated from several 
images photographed by a polarizer in specific orientations, are used to 
realize the polarization image recovery. Whereas, applying physical 
model widely to reconstruct target in scattering media inevitably suffers 
from certain disadvantages. For example, the performance of physical 
model-based polarization imaging methods heavily relies on the 
knowledge related to the physical characteristics of the scene. Further-
more, physical model-based polarization imaging methods are routinely 
grounded in idealized conditions, making them difficult to scale and 
limiting potential applications. 

To overcome the shortcomings of physical model-based methods, a 
few deep learning (DL) techniques that utilize multi-layer artificial 
neural networks to learn tasks, have been successfully applied to solve 
computational imaging problems, including polarization image recov-
ery, such as AOD-Net [27], DualCNN [28], IPLNet [29], PFNet [30], 
PDRDN [31], MU-DLN [32], U2R-pGAN [33], SAM-MIU-net [34]. These 
methods often employ only one polarization image or multiple polari-
zation images to achieve the reconstruction of polarized images with one 
or more DL algorithms, such as convolutional neural networks (CNN) 
[35,36], fully-connected hidden layers [37], and support vector ma-
chine [38]. For example, in PFNet [30], an unsupervised deep neural 
network combined intensity and DoLP images together to address the 
polarization image fusion problem. In PDRDN [31], to capture sufficient 
polarization information, four angles of polarization pictures, i.e., 0∘, 
45∘, 90∘, and 135∘, are fed into PDRDN, which is mainly constructed by 
residual dense network [39], to eliminate noise for polarization under-
water images. In SAM-MIU-net, a self-attention module in multi-scale 
improved U-net, which can extract a new combination of 
multi-dimensional information from targets, is proposed to further 
enhance PSI. 

Nevertheless, despite achieving the efficiency and accuracy, the 
existing methods more-or-less have several critical deficiencies. It can be 
concluded that all the above methods only consider local polarization 
feature information using convolution operation, whereas ignoring 
long-range polarization dependencies. Also, from the perspective of 
polarization properties, the relationship between the scattering imaging 
distance, and the constituent materials and the polarization scattering 
imaging quality needs to be explored in-depth, rather than just consid-
ering the geometry of the target. Motivated by these discoveries, in this 
paper, we propose a novel PSI method, based on a local-global context 
polarization feature learning (LGCPFL) framework, named as the PSI- 
LGCPFL, which can further enhance PSI’s recovery performances effi-
ciently. Compared with previous PSI methods, the novelties of our work 
can be briefly summarized as follows:  

i. We model polarization imaging though scattering media as an 
inverse imaging problem computationally and proposed a novel 
high-performance PSI method called PSI-LGCPFL based on 
LGCPFL framework trained from a self-built dataset.  

ii. Unlike existing PSI methods, a newly customized LGCPFL 
framework, which is equipped with local context polarization 
feature learning branches (LCPFLB) and global context polariza-
tion feature learning branches (GCPFLB), is designed to capture 
the relationship between the object intensity image and the po-
larization information well from the sole DoLP map.  

iii. At present, due to the extreme difficulty of obtaining polarization 
images in a scattering environment, there are no or a paucity of 
publicly available datasets with richer real-world scenarios. 
Hence, we establish one scattering system under active light 
illumination and construct one polarization scattering image 
dataset, covering more abundant real scenarios, which facilitates 
further development of PSI techniques. 

iv. We validate the efficacy of PSI-LGCPFL through extensive ex-
periments on the challenging real image datasets. Benchmarking 
results demonstrate that the PSI-LGCPFL achieves competitive 
performance on retrieving the target’s information with high- 
generalization abilities and outperforms several existing state- 
of-the-art approaches, highlighting its promising potential in 
solving the PSI problem. 

2. Method 

The proposed PSI-LGCPFL consists of three steps of establishing one 
benchmark dataset, extracting polarization information encoding by 
DoLP, and LGCPFL model training, where the flowchart is depicted in 
Fig. 1. 

2.1. Physical mechanism 

Generally, Stokes parameters [40] S = (I, Q, U,V)
T is used to rep-

resented the polarization information. Each component in the Stokes 
parameters can be calculated from four polarization images (i.e., I0∘ (x,
y), I45∘ (x, y), I90∘ (x, y), and I135∘ (x, y)) taken by orienting linear 

polarizer at 0∘, 45∘, 90∘, and 135∘ in the same scene. The Stokes pa-
rameters can be expressed as: 

I(x, y) = I0∘ (x, y) + I90∘ (x, y) (1)  

Q(x, y) = I0∘ (x, y) − I90∘ (x, y) (2)  

U(x, y) = I45∘ (x, y) − I135∘ (x, y) (3)  

V(x, y) = IR∘ (x, y) − IL∘ (x, y) (4)  

where I(x, y) denotes the total intensity received by the camera, Q(x, y)
refers to the intensity difference between the horizontal and vertical 
components, U(x, y) is the intensity difference between the 45∘ and 90∘ 

components, and V(x, y) means the intensity difference between right- 
handed and left-handed components. It should be noted that we use 
linearly polarized light throughout the experiment, thus V(x, y)=0. The 
DoLP is chosen as the sole feature source in this paper, which can be 
simply calculated as: 

DoLP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Q(x, y)2
+ U(x, y)2

√

I(x, y)
(5)  

When light travels through the scattering media, the polarization char-
acteristics of the reflected or transmitted light will generally change, and 
the process can be formulated as 

Ŝ = M⋅Sobj (6)  

where M is the Muller matrix [41] of the scattering medium, Sobj means 
the Stokes parameters of the incident light, and Ŝ represents the Stokes 
parameters of the outgoing light after interaction with the scattering 
media. In the case that the concentration of the scattering medium be-
comes larger or the imaging distance becomes longer, the detector will 
receive information containing a large amount of speckle, which will 
affect the imaging quality. The detector is also unable to effectively 
distinguish between the target and its background, when the target and 
its background have similar polarization characteristics. Furthermore, 
the polarization information is very sensitive to the composition of the 
target material and its structural properties. The reconstruction of the 
object image can be regard as an inverse problem of imaging in scat-
tering medium, and the process is formulated as the following objective 
function 

Sobj = M− 1⋅Ŝ (7) 
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Fig. 1. (a) Pipeline of the PSI-LGCPFL for polarization image reconstruction. (b) The LCPFLB and GCPFLB in the LGCPFL framework. (c) Illustration of the LCPFLB’s 
architecture. (d) Illustration of modified VGG block. “Norm.” denotes the batch normalization layer, “Act.” denotes the linear rectification activation function (relu), 
and “Drop.” denotes the dropout ratio. (e) Illustration of the GCPFLB’s architecture. (f) Illustration of Swin Transformer block. 

Fig. 2. (a) Experimental setup for the PSI through scattering medium, (b) The obtained images (I0∘ (x, y), I45∘ (x, y), I90∘ (x, y), and I135∘ (x, y)) from the DoFP po-
larization Camera, the calculated DoLP image, and the ground truth. 
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where M− 1 is the inverse of M. Hence, to efficiently address the inverse 
problem, we attempt to couple the polarization physical priors with DL 
techniques to map the low-quality original speckle images to high- 
quality retrieved images from the statistical distribution of polariza-
tion information in the training dataset. 

2.2. Experimental setup 

High-quality benchmark datasets are important to establish reliable 
polarization image recovery models. By revisiting existing DL-based 
methods, it can be found that DL models of some existing methods, e. 
g., Modified U-Net based DL network [32], are trained on one synthetic 
dataset. Although these methods have achieved considerable progresses 
in reconstructing polarization images, their applicability is still difficult 
in real world. Hence, building a real-life scenarios dataset to directly 
verify the effectiveness of polarization image recovery methods is highly 
desired and can be well complementary to optical experimental 
methods. 

Here, we establish a real-world polarization scattering imaging sys-
tem under active light illumination, and the schematic diagram of the 
experimental setup is illustrated in Fig. 2(a). A linear polarizer is 
employed as the polarization state generator to provide polarized illu-
mination in front of the LED light source. The ground glass is utilized as 
the scattering medium device. The light is focused by means of a convex 
lens. DIS means the distance between the scattering medium and the 
objects. One real-world polarization dataset is established using a 
commercial division of focal plane (DoFP) polarization camera (Model 
type: LUCID, PHX055S-PC), whose spatial resolution is 2448 × 2048. 
For each single shot, DoFP polarization camera can photograph simul-
taneously four polarized images with polarization directions of 0∘, 45∘, 
90∘, and 135∘, called I0∘ (x, y), I45∘ (x, y), I90∘ (x, y), and I135∘ (x, y), 
respectively. Using the digit written in ink as an example, Fig. 2(b) 
shows separately the I0∘ (x, y), I45∘ (x, y), I90∘ (x, y), I135∘ (x, y), DoLP, and 
ground truth. 

2.3. The LGCPFL framework 

DL has recently been proven to be a fascinating algorithm and suc-
cessfully applied in a wide variety of computational imaging domains, 
including polarization imaging in scattering media. Here, a novel 
custom-made LGCPFL framework is established to achieve polarization 
image recovery. The overall architecture of our proposed LGCPFL 
framework is presented in Fig. 1. LGCPFL framework consists of two 
main modules, LCPFLB (shown in Fig. 1(c)) and GCPFLB (shown in Fig. 1 
(e)). 

In Fig. 1(c), the original DoLP image signal is entered into the 
LCPFLB to distill local contextual feature of polarization information. 
The architecture of LCPFLB, whose overall design follows the UNet++

[42] model, consists of a series of down-sampling layers to derive 
increasing complex context feature representation of the input image, 
followed by a sequence of up-sampling layers. This structure fuses the 
high-resolution feature maps from the encoder network with the cor-
responding semantic-rich feature maps from the decoder network to 
capture the structural and detailed polarization features of the target 
more efficiently. Multiple lateral connections between down-sampling 
and up-sampling layers are employed to fill in contextual information 
[42]. Each down-sampling layer or up-sampling layer is implemented by 
using modified VGG block [43] (shown in Fig. 1(d)). In the modified 
VGG block, it first integrates two dilated convolutional layers with 
kernel size of 3 × 3 and the dilation rate of 2 to mine discriminative 
information. After each dilated convolutional layer, batch normalization 
[44] and ReLU activation function [45] are employed. A dropout [46] 
strategy with a ratio of 25 % is utilized to avoid overfitting. Further-
more, one convolutional block attention module [47] is embedded the 
modified VGG block to capture key position information. 

Convolutional kernels used in LCPFLB naturally integrate key in-
formation from nearby context areas. Since long-range dependencies 
existing in a whole image should influence the polarization properties, 
we also design the GCPFLB module to integrate distant information 
using the Swin Transformer-based expansion architecture inspired by 
Swin-unet model [48]. As shown in Fig. 1(e), the input of GCPFLB is a 
series of patches of the original DoLP image. The architecture of GCPFLB 
mainly includes three modules, i.e., down-sampling layers based on 
Swin Transformer blocks [49] (shown in Fig. 1(f)) and one patch 
merging layer, up-sampling layers based on Swin Transformer blocks 
[49] and one patch expanding layer, and single skip connection between 
down-sampling and up-sampling layers [48]. In GCPFLB, the feature 
dimension of each patch is first projected into custom dimension (i.e., C) 
using a linear embedding layer. Second, the transformed patches are 
entered into several down-sampling layers to produce the hierarchical 
features, followed by a series of up-sampling layers. Next, the hierar-
chical features are merged with multi-scale features from up-sampling 
layers via single skip connection. Finally, the last patch expanding 
layer is used to generate the output of GCPFLB. The output of GCPFLB 
incorporates that of LCPFLB to reconstruct the polarization image. 

2.4. Model implementation 

All experiments are performed on Linux Server (Version 5.15.0–41) 
Intel Core i7–7700 CPU @3.6Hz 32.0GB of RAM, and Python 3.7 pro-
gramming. One training dataset TR200 and three independent valida-
tion datasets, i.e., STR24, DIS50 and MAT18 (see details in the 
‘Benchmark Dataset’ section), are employed to train and test the model 
of PSI-LGCPFL, respectively. In the training process, we use Scikit-image 
Python library to enhance the training dataset by rotating and flipping 
the existing images. Furthermore, all images are adjusted to a fixed size, 
i.e., 256 × 256, when fed into the networks, and the pixel values will 
undergo normalized to [0, 1]. 

The model of PSI-LGCPFL is implemented in PyTorch library 
(Version 1.7.1) [50] and trained by using the Adam optimization algo-
rithm. The initial learning rate is set as 0.0005 and 0.0001 for the first 
240 epochs and the last 60 epochs respectively. To speed up training, the 
models are trained on one graphics processing unit (GPU: Nvidia 
GeForce RTX 3090) with a batch size of 10. In the model training pro-
cess, the mean squared error function (MSE) is used to calculate the loss, 
which is calculated by: 

MSE =

∑H
i=1

∑W
j=1(R(i, j) − G(i, j))2

H × W
(8)  

where H and W are the length and width of the picture; R(i, j) and G(i, j)
mean the pixel value of ith row and jth column in the reconstructed 
images and ground truths, respectively. We use the strategy of a grid 
search and adjust the network’s hyper-parameters, i.e., N1, N2, N3, and 
N4, by observing the model performance on the training dataset over 
five-fold cross-validation tests. Finally, according to the best perfor-
mance of PSI-LGCPFL model, we use the following values for the above 
hyper-parameters: N1=2, N2=6, N3=2, and N4=1. 

2.5. Evaluation metrics 

Two widely used evaluation indexes, i.e., Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similarity Index Measure (SSIM), are employed to 
assess the quality for image recovery. PSNR is applied to quantify the 
content between the reconstructed images and ground truths, and a 
higher PSNR value represents closer image content. SSIM is used to 
evaluate the structure and texture between the reconstructed images 
and ground truths, and a higher SSIM value reflects a more similar 
structure and texture. The two indexes can be calculated by following 
equations: 
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PSNR = 10log10
(
MAX2 /MSE

)
(9)  

SSIM =
(2ρRρG + C1)(2βRG + C2)

(ρ2
R + ρ2

G + C1)
(
β2

R + β2
G + C2

) (10)  

where MAX is the maximal in the image; ρR and βR are the corresponding 
average and variance values of the reconstructed image R, respectively; 
ρG and βG are the corresponding average and variance values of the 
ground true image G, respectively; βRG is the variance value between R 
and G; C1 and C2 are small positive constants utilized to avoid a null 
denominator. 

3. Result and discussion 

3.1. Benchmark dataset 

To build one benchmark dataset, we perform polarization imaging 
experiments in scattering system under active light condition, and the 
schematic diagram of the experimental setup is illustrated in Fig. 2. A 
linear polarizer is used as the polarization state generator to provide 
polarized illumination S = (1, 1, 0, 0)T in front of an LED light source 
that emits light. Firstly, the object of interest is placed away from the 
DoFP polarization camera to produce ground truths. Note that at this 
time no scattering media device is positioned in front of the object. Then, 
the scattering media device, i.e., ground glass, is placed in front of the 
object and degraded images are taken as original feature sources. 
Finally, we experimentally establish one benchmark dataset, which is 
composed of one training dataset and three independent validation 
datasets. Concretely, our training dataset (named TR200) consists of 200 
pairs of images generated with a ground glass at a distance of 40 mm 
from the targets, and the targets are only a variety of handwritten digits 
written in ink on the white paper. For the validation performance of our 
proposed PSI-LGCPFL, the following three independent validation 
datasets are included:  

(i) Validate the performance of PSI-LGCPFL owing to the change in 
untrained objects with different structures. It consists of 24 pairs 
of images produced with a distance of 40 mm between ground 
glass and the targets. The targets contain three categories, i.e., 
untrained handwritten digits, handwritten alphabets, and hand-
written graphic patterns, written in ink on the white paper. For 
descriptive purposes, this independent validation dataset is 
named as STR24.  

(ii) Validate the performance of PSI-LGCPFL owing to the untrained 
objects about untrained distances between the ground glass and 
the targets. It consists of 50 pairs of images produced with dis-
tance of 35 mm, 40 mm, 42.5 mm, 45 mm and 50 mm between 
ground glass and the targets. The targets include three categories 
(i.e., untrained handwritten digits, handwritten alphabets, and 
handwritten graphic patterns) written in ink on the white paper. 
For descriptive purposes, this independent validation dataset is 
named as DIS50.  

(iii) Validate the performance of PSI-LGCPFL owing to the change in 
untrained object materials with untrained background materials. 
It is composed of 18 pairs of images created with a distance of 40 
mm between ground glass and the targets. The targets include 
three classifications, i.e., Paper-Steel, Wood-Steel, and Wood-Ink. 
The Paper-Steel, Wood-Steel, and Wood-Ink mean digits (or al-
phabets) made of steel against paper background, digits (or al-
phabets) made of steel against wood background, and digits (or 
alphabets) written in ink against wood, respectively. This inde-
pendent validation dataset is called MAT18, for the sake of 
description. 

3.2. Ablation study 

(1) Comparison of our model LGCPFL with the LCPFLB and the 
GCPFLB. To demonstrate the powerful ability of our proposed model, 
we conduct ablation studies to compare our model LGCPFL with the 
LCPFLB and the GCPFLB alone on TR200 over five-fold cross-validation 
tests. Specifically, (i) the training dataset TR200 is randomly divided 
into five non-overlapping subsets; (ii) in each testing stage, the LGCPFL, 
LCPFLB, and GCPFLB frameworks train the prediction models on four 
subsets, meanwhile, the remaining subset is employed to evaluate the 
performance of the trained models; (iii) the averages of five-fold cross- 
validation tests are calculated as the final results. Note that for a fair 
comparison, the inputs of LGCPFL, LCPFLB, and GCPFLB are all DoLP 
polarization images in this section. The five-fold cross-validation tests 
results of LGCPFL, LCPFLB, and GCPFLB are summarized in Table 1, 
respectively. In addition, ten samples are randomly selected from the 
results of the five-fold cross-validation tests of the training dataset for 
visual comparison. Fig. 3 displays a visual comparison of recovery re-
sults of LGCPFL framework with LCPFLB and GCPFLB frameworks on 
ten cases. 

By observing Table 1, it is easy to find that LGCPFL is consistently 
superior to LCPFLB and GCPFLB concerning the two evaluation indexes, 
i.e., SSIM and PSNR. The SSIM and PSNR of LGCPFL are 0.79 and 14.81, 
which are 8.22 % and 9.38 % higher than those of LCPFLB, and 14.49 % 
and 59.94 % higher than those of GCPFLB, respectively. The differences 
in SSIM and PSNR values are both statistically significant, which have p- 
values<10− 7 in the Student’s t-test, except for the PSNR of LCPFLB. 
Fig. 3 also exhibits the same phenomenon. Taking ②’s results in Fig. 3 as 
an example, compared with the LCPFLB framework, LGCPFL achieves 
the improvement of 9.09 % and 12.36 % on SSIM and PSNR, respec-
tively. Furthermore, the images recovered by the LGCPFL yields better 
visual effects. The above comparison results can demonstrate that the 
performance is indeed enhanced after applying our proposed LGCPFL 
model. 

(2) Comparison of different polarization components: This sec-
tion examines to what extents the DoLP polarization component can 
help to reconstruct the scattering images. Thus, the recovery perfor-
mance of the LGCPFL framework with six polarization components, i.e., 
I0∘ (x, y), I45∘ (x, y), I90∘ (x, y), I(x, y), and DoLP, are investigated. The 
performances of our proposed LGCPFL framework with these six po-
larization components are evaluated by performing five-fold cross- 
validation tests on the training dataset TR200. Table 2 summarizes the 
discriminative average performance results of these polarization com-
ponents. Fig. 4 demonstrates visual comparison of recovery results of the 
LGCPFL framework with five polarization components on some samples. 

From Table 2, we can find that the performance of DoLP is superior to 
those of other four polarization components in terms of both evaluation 
indexes. Concretely, compared to the second-best performer I0∘ , the 
SSIM and PSNR values of DoLP are 0.81 and 15.32, respectively, which 
are improvements of approximately 3.85 % and 3.10 % over those of I0∘ , 
respectively. The performance improvement observed for five polari-
zation components is statistically significant as shown by the p-values 
obtained through paired t-test in Table 2. In Fig. 4, the LGCPFL with 
DoLP is the sole approach that achieves SSIM>0.76 and PSNR>14.26 on 
ten cases. The experimental results demonstrate that the DoLP 

Table 1 
Performance comparison of recovery results of LGCPFL framework with those of 
LCPFLB and GCPFLB frameworks on the training dataset TR200 over five-fold 
cross-validation tests.  

Dataset Method SSIM PSNR 
value p-value value p-value 

TR200 LCPFLB 0.73 6.7 × 10− 7 13.54 2.5 × 10− 1  

GCPFLB 0.69 1.7 × 10− 12 9.26 1.5 × 10− 15  

LGCPFL 0.79  14.81   
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containing polarization feature information is more helpful for the re-
covery of scattering images under scattering medium conditions. 

3.3. Performance analysis 

(1) Performance on untrained target with untrained geometry 
structures. The purpose of this section is to experimentally demonstrate 
the efficacy of the proposed PSI-LGCPFL by performing independent 
validation tests on dataset STR24 consisted of 8 untrained handwritten 
numeric targets, 8 untrained handwritten alphabet targets, and 8 un-
trained handwritten graphic pattern targets. To evaluate the recovery 
ability of PSI-LGCPFL more fairly and objectively on untrained targets, 

the experimental design criteria are set as following: (i) the prediction 
model of PSI-LGCPFL for all the following independent verification tests 
are constructed on the training dataset TR200, and the targets in the 
training dataset are only simply digits written in ink on the white paper 
(see details in the ‘Benchmark Dataset’ section); (ii) the target genera-
tion in the independent validation dataset STR24 and the training 
dataset TR200 meet the same experimental setup conditions, e.g., the 
imaging distance between the ground glass and the objects is set as 40 
mm, except for more complexity of target shape in the testing dataset; 
(iii) the results of PSI-LGCPFL model are reported on STR24, and SSIM 
and PSNR are used to validate the performance of PSI-LGCPFL model. 

We first conduct validation experiments on untrained handwritten 
digits. Fig. 5 shows the visual comparison between recovery results of 
PSI-LGCPFL and corresponding ground truths for untrained digit targets. 
Fig. 5A, B, and C present the scattering DoLP images, ground truth, and 
the reconstructed results, respectively. In Fig. 5, it is clearly demon-
strated that PSI-LGCPFL gains relatively superior reconstruction results 
concerning the two evaluation indexes (SSIM and PSNR) and visual 
quality. Specifically, out of the 8 targets, there are three cases where PSI- 
LGCPFL reaches SSIM>0.80 and PSNR>14.65. As expected, well visual 
details and high-quality structures can be observed between the recon-
structed images of PSI-LGCPFL and the corresponding ground truths. 

Next, we further empirically examine the generalization and recon-
struction performance of the PSI-LGCPFL on 8 untrained handwritten 
alphabet targets and 8 untrained handwritten graphic pattern targets. 
The visual comparison between the recovery results of PSI-LGCPFL and 
ground truths on untrained handwritten alphabets and graphic patterns 
are demonstrated in Figs. 6 and 7, respectively, in which it is easily 
found that the PSI-LGCPFL can consistently recover such high-quality 
images from the scattering images that are difficult to distinguish ob-
jects. Using results on handwritten alphabet targets as an example, 
among the 8 untrained alphabet targets, the PSI-LGCPFL has 5 cases 
with SSIM>0.75. More specifically, the SSIM and PSNR values, which 
are important indexes to assess the overall performance of the polari-
zation imaging methods, in ②, ③, ④, ⑤ and ⑥ are 0.79 and 15.01, 0.76 
and 14.47, 0.81 and 17.85, 0.76 and 13.55, and 0.75 and 12.80, 
respectively. Moreover, according to the average SSIM and PSNR of the 
PSI-LGCPFL for three types of untrained targets on the independent 
validation dataset STR24 listed in Table 3, we can find that the PSI- 
LGCPFL has the best performance for the untrained digit targets, fol-
lowed by untrained alphabet targets and untrained graphic pattern 
targets. 

(2) Performance on untrained target with untrained imaging 
distances. To investigate whether and to what extent in the untrained 
objects with untrained distances between the ground glass and the ob-
jects can influence the performance of the PSI-LGCPFL, we design and 
conduct a sequence of independent validation tests on the dataset DIS50. 
The dataset DIS50 consisted of untrained targets with trained/untrained 
distances is first built. The generalization performance of our proposed 
PSI-LGCPFL model then is assessed on the dataset DIS50. Table 4 pro-
vides a comparison of the predictive performance of the PSI-LGCPFL for 
various imaging distances. Fig. 8 illustrates a visual comparison of 

Fig. 3. Visual comparison of the recovery results of LGCPFL framework with 
those of LCPFLB and GCPFLB frameworks on ten samples selected from the 
results of the five-fold cross-validation tests of training dataset TR200. (A) the 
scattering DoLP image of input; (B) ground truths; (C) the images recovered by 
LCPFLB; (D) the images recovered by GCPFLB; (E) the images recovered 
by LGCPFL. 

Table 2 
Comparison of recovery results of different polarization components with 
LGCPFL framework on the training dataset TR200 over five-fold cross-validation 
tests.  

Method Feature SSIM PSNR 
value p-value value p-value 

LGCPFL I0∘ 0.78 3.4 × 10− 3 14.86 2.6 × 10− 2 

I45∘ 0.73 6.2 × 10− 5 12.39 1.1 × 10− 8 

I90∘ 0.75 1.6 × 10− 2 14.08 3.4 × 10− 3 

I 0.76 5.3 × 10− 4 13.46 7.5 × 10− 3 

DoLP 0.81  15.32   

Fig. 4. Visual comparison of the recovery results of different polarization 
components on the training dataset TR200 over five-fold cross-validation tests 
using the LGCPFL framework. (A) ground truths; (B) the images recovered by 
LGCPFL with DoLP; (C) the images recovered by LGCPFL with I0∘ ; (D) the im-
ages recovered by LGCPFL with I45∘ ; (E) the images recovered by LGCPFL with 
I90∘ ; (F) the images recovered by LGCPFL with I. 

Fig. 5. Visual comparison between the recovery results of PSI-LGCPFL for 
untrained digit targets and ground truths on the independent validation dataset 
STR24. (A) the scattering DoLP images of input; (B) ground truths; (C) the 
images recovered by the PSI-LGCPFL. 
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recovery results of the PSI-LGCPFL for the untrained distances between 
the ground glass and the objects on the independent validation dataset 
DIS50. 

By carefully observing Table 4, not surprisingly, it is easy to see that 
the recovery performance of the PSI-LGCPFL at DIS=40 mm out-
performs those at DIS=35, DIS=42.5, DIS=45 and DIS=50 mm in terms 
of SSIM and PSNR. Concretely, compared with DIS=35, the second-best 
performance’s distance from the viewpoint of SSIM, the SSIM and PSNR 
of PSI-LGCPFL at DIS=40 mm are 0.78 and 15.14, which are 2.63% and 
5.80%, respectively, higher than that at DIS=35. Moreover, from Fig. 8, 
it is easy to find that when DIS=35, 40, and 42.5 mm, the image 
recovered by the PSI-LGCPFL have well structural integrity. When dis-
tance greater than 42.5 mm, although the performance of the PSI- 
LGCPFL drops slowly in recovering image details, the background and 
target of the reconstructed image can be effectively distinguished. As 
expected, the values of two evaluation indexes exhibit the same phe-
nomenon. Taking ③ in Fig. 8 as an example, the SSIM and PSNR values 
are 0.80 and 15.49, 0.81 and 16.14, 0.77 and 13.87, 0.76 and 14.65, and 
0.75 and 13.47, respectively, at DIS=35, 40, 42.5, 45 and 50 mm, which 
show the superior performance of our proposed PSI-LGCPFL. Mean-
while, it should be noted that for the case at DIS=50 mm, the imaging 
distance’s generalization reaches to 25% that can be an index for 
demonstrating excellence of our proposed PSI-LGCPFL. 

(3) Performance on untrained target with untrained Materials. 

The polarization characteristics of the image signal are heavily influ-
enced by the structural properties and the constituents of the target’s 
material. In this section, to further evaluate the efficacy of proposed PSI- 
LGCPFL, its generalization performance is also experimentally evaluated 
on the independent validation dataset MAT18 containing three types 
untrained targets with diverse background materials, i.e., Paper-Steel, 
Wood-Ink, and Wood-Steel (see details in the ‘Benchmark Dataset’ sec-
tion). We design the following experiments in an orderly manner to 
fairly and reasonably explore the effects of target materials on the per-
formance of the PSI-LGCPFL. Firstly, we conduct validation experiments 
on the subset Paper-Steel of MAT18, i.e., untrained digit (or alphabet) 
targets made of steel against trained paper background, for researching 
into the polarization characteristic of steel. Secondly, the subset Wood- 
Ink, i.e., untrained digit (or alphabet) targets made of ‘trained’ ink 
against untrained wood background, is used to study the polarization 
characteristic of wood. Finally, the subset Wood-Steel, i.e., untrained 
digit (or alphabet) targets made of steel against untrained wood back-
ground, is employed to investigate the polarization characteristic of the 
interaction between steel and wood. Table 5 demonstrates the perfor-
mance of the PSI-LGCPFL on the independent validation dataset MAT18. 
Figs. 9, 10, and 11 display visual comparisons of recovery results of PSI- 
LGCPFL on the subsets Wood-Ink, Wood-Steel, and Paper-Steel, 
respectively. 

Based on the obtained SSIM and PSNR listed in Table 5, we can find 
that our proposed PSI-LGCPFL show the best performance on the Wood- 
Ink, followed by Wood-Steel and Paper-Steel. Concretely, among the 
three subsets, PSI-LGCPFL has the highest values of SSIM and PSNR on 
the Wood-Ink subset, reaching 0.67 and 13.24, respectively. As 
described in Figs. 9, 10, and 11, our proposed PSI-LGCPFL can effec-
tively distinguish the target and background. Taking the ‘8’ shape made 
of steel in Fig. 11(⑥) as an example, despite the SSIM and PSNR of PSI- 
LGCPFL are 0.44 and 6.65, respectively, the structural outline of the 
figure ‘8’ can be reconstructed well. It has not escaped from our notice 
that our proposed PSI-LGCPFL performs poorly on certain targets in the 
subset Wood-Ink, e.g., the targets of recovery are even more distorted. 
The reason for this is that the training dataset has only 200 samples. 
Thus, to improve performance further, constructing a large high-quality 
dataset will be an effective strategy. 

By observing Table 5 and Figs. 9, 10, and 11, we can find an 

Fig. 6. Visual comparison between the recovery results of PSI-LGCPFL for 
untrained alphabet targets and ground truths on the independent validation 
dataset STR24. (A) the scattering DoLP images of input; (B) ground truths; (C) 
the images recovered by the PSI-LGCPFL. 

Fig. 7. Visual comparison between the recovery results of PSI-LGCPFL for 
untrained graphic targets and ground truths on the independent validation 
dataset STR24. (A) the scattering DoLP images of input; (B) ground truths; (C) 
the images recovered by the PSI-LGCPFL. 

Table 3 
Performance of PSI-LGCPFL on the independent validation dataset STR24.  

Dataset Different targets Digit Alphabet Graphic 

STR24 SSIM 0.79 0.76 0.71 
PSNR 15.18 14.41 12.76  

Table 4 
Performance of the PSI-LGCPFL on the independent validation dataset DIS50.  

Dataset Distance (mm) 35 40 42.5 45 50 

DIS50 SSIM 0.76 0.78 0.75 0.75 0.73 
PSNR 14.31 15.14 13.88 13.80 12.51  

Fig. 8. Visual comparison of the recovery results of PSI-LGCPFL for the un-
trained distances between the ground glass and the objects on the independent 
validation dataset DIS50. (A) ground truths; (B) DIS=35 mm; (C) DIS=40 mm; 
(D) DIS=42.5 mm; (E) DIS=45 mm; (F) DIS=50 mm. 

Table 5 
Performance of PSI-LGCPFL on the independent validation dataset MAT18.  

Dataset Material Wood-Ink Wood-Steel Paper-Steel 

MAT18 SSIM 0.67 0.50 0.47 
PSNR 13.24 5.18 6.34  
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interesting fact that, although PSI-LGCPFL obtains lower SSIM and PSNR 
values on both subsets, i.e., Wood-Steel and Paper-Steel, compared with 
those of Wood-Ink subset, the structural outline and visual quality of the 
steel targets in the reconstructed images on both subsets Wood-Steel and 
Paper-Steel by PSI-LGCPFL are superior. This phenomenon can be 
further speculated that the polarization characteristics of steel is more 
robustness in scattering medium by reason of its high reflectivity and 
low deflection characteristics. Meanwhile, the GCPFLB in the PSI- 
LGCPFL is helpful for reconstructing the targets with wide line width 
due to its powerful ability of extracting global polarization features. 

3.4. Comparison with the state-of-the-art methods 

To further evaluate the ability of our PSI-LGCPFL, its performance is 

also assessed on six representative testing samples, compared to several 
state-of-the-art methods, including dark channel prior (DCP) [9], 
Polarimetric-Net [51], MU-DLU [32], and SAM-MIU-net [34]. Of the 
four methods, the former one, i.e., DCP, is physical model-based 
methods, while the other three, i.e., Polarimetric-Net, MU-DLU, and 
SAM-MIU-net are DL-based methods. For an objective and fair com-
parison, except for non-DL-based methods, the remaining methods are 
respectively trained on the same training dataset and evaluated on the 
same testing samples. The comparative results are demonstrated in 
Table 6 and Fig. 12. 

As described in Table 6, it is easily found that PSI-LGCPFL consis-
tently outperforms other state-of-the-art methods concerning two eval-
uation indexes. To be more specific, the SSIM and PSNR of PSI-LGCPFL 
are 0.68 and 11.74, which are 142.86% and 117.01% higher than DCP, 
11.48% and 36.35% higher than Polarimetric-Net, 7.94% and 21.28% 
higher than MU-DLU, and 6.26% and 17.16% higher than SAM-MIU-net, 
respectively. In addition, the running time of PSI-LGCPFL is measured 
against other comparative methods. Note that, in order to make the 
comparison as fair as possible, the running time of PSI-LGCPFL and the 
control methods are evaluated on the same computational device 
(Windows Server 10 (Version 21H1) Intel Core i7–9750 CPU @2.60Hz 
2.59GHz, and 16.0GB of RAM). Concretely, DCP, Polarimetric-Net, MU- 
DLU, SAM-MIU-net, and PSI-LGCPFL take 7.73s, 12.16s, 9.12s, 2.69s, 
and 8.63s, respectively, to reconstruct a polarized image. On the other 
hand, from the visual-level viewpoint as follows Fig. 12, PSI-LGCPFL 
yields a higher visual quality compared with other recent methods. It 
has not escaped from our notice that although SAM-MIU-net make all its 
efforts to be able to reconstruct some parts of the target geometry, it does 
not work on various untrained object materials with untrained back-
ground materials. 

4. Conclusion 

We have developed and implemented a novel method, termed PSI- 
LGCPFL, to reconstruct polarization image from DoLP polarization in-
formation. Experimental results have demonstrated the efficacy of the 
proposed PSI-LGCPFL via validating its performances on three inde-
pendent validation datasets and comparison to several state-of-the-art 
PSI methods. The excellent performance of PSI-LGCPFL is mainly 
attributed to the following reasons: (i) one high-quality benchmark 
dataset is used; (ii) up to our knowledge, a multi-module network and 
Swin Transformer block are integrated to achieve optical polarization 
scattering imaging for the first time; (iii) a well-designed LGCPFL 
framework can effectively learn a highly expressive optical physical 
representation between the object radiance and the polarization 
information. 

Despite its good performance, the proposed PSI-LGCPFL still has 
potential disadvantages. For instance, PSI-LGCPFL may lack the ability 
to remove noisy information in feature sources during feature pre- 
processing. Our further research work comprises the following four di-
rections to further enhance the recovery efficacy of polarization image: 
(i) designing high discriminative feature source; (ii) developing an 
excellent feature optimization tool to get rid of noise in the feature; (iii) 
designing a more accurate method by combining PSI-LGCPFL and 
various macroscopically identical microscopically different scattering 
medias; (iv) developing useful strategies to extract discriminative 
feature. Furthermore, the performance of DL-based computational im-
aging methods is optimal for high-contrast targets, but these methods 
are likely to encounter limitations when applied to complex scenes. The 

Fig. 9. Visual comparison between the recovery results of the PSI-LGCPFL for 
the untrained ink targets with untrained wood background material, i.e., Wood- 
Ink, and ground truths on the independent validation dataset MAT18. (A) the 
scattering DoLP images of input; (B) ground truths; (C) the images recovered by 
the PSI-LGCPFL. 

Fig. 10. Visual comparison between the recovery results of PSI-LGCPFL for the 
untrained steel targets with untrained wood background material, i.e., Wood- 
Steel, and ground truths on the independent validation dataset MAT18. (A) 
the scattering DoLP images of input; (B) ground truths; (C) the images recov-
ered by the PSI-LGCPFL. 

Fig. 11. Visual comparison between the recovery results of the PSI-LGCPFL for 
the untrained steel targets with trained paper background material, i.e., Paper- 
Steel, and ground truths on the independent validation dataset MAT18. (A) the 
scattering DoLP images of input; (B) ground truths; (C) the images recovered by 
the PSI-LGCPFL. 

Table 6 
Performance comparison between PSI-LGCPFL and other methods.  

Method DCP Polarimetric-Net MU-DLU SAM-MIU-net PSI-LGCPFL 

SSIM 0.28 0.61 0.63 0.64 0.68 
PSNR 5.41 8.61 9.68 10.02 11.74  
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integration of physics and artificial intelligence could potentially offer a 
solution to the problem. Finally, although the proposed PSI-LGCPFL still 
has room for optimization, we believe that it will be exploited as a useful 
tool to speed up the progress of optical scattering imaging application. 
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