
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Infrared Polarization-Empowered Full-Time
Road Detection via Lightweight
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2D/3D Convolutional Networks

Xueqiang Fan, Bing Lin, and Zhongyi Guo

Abstract— Automatic roads detection is an essential task for
traffic safety and intelligent transportation systems. Recently
the long-wave infrared (LWIR) polarization imaging-based road
detection technique has obtained significant progresses. However,
the joint analysis among multiple polarization characteristics,
sparse inter-channel information (along the z-axis), and dense
intra-channel information (inside the x- y plane), have not been
considered effectively, hindering the effective detection of many
road areas. Additionally, most of the existing methods often
encounter a challenging trade-off between achieving high pre-
cision and maintaining a lightweight design. To tackle these
issues, this paper presents a novel Lightweight Multi-Pathway
Collaborative 2D/3D Convolutional Networks (LMPC2D3DCNet)
with a small number of parameters for full-time road detection.
Our LMPC2D3DCNet is the first attempt to incorporate 2D
and 3D convolutional networks to balance extraction for sparse
inter-channel polarization information and dense intra-channel
polarization information, in which a new Cross 2D-3D Non-Local
Attention (C2D3DNLA) network is proposed to derive respective
latent features by exploiting both local and global polarization
correlations. Meanwhile, it also follows the design of a multipath
network structure that elegantly fuses plenty of low-frequency,
high-frequency, and multiscale polarization information, thus
obtaining more accurate modeling for road regions. Extensive
experiments on one public infrared polarization dataset of road
scenes demonstrate that our proposed LMPC2D3DCNet (The
code will release soon on https://github.com/XueqiangF) achieves
PRE of 96.96%, REC of 96.71%, OA of 99.45%, F1 of 96.72,
BER of 1.80% and IoU of 93.85%, and outperforms significantly
state-of-the-art methods.

Index Terms— Road detection, polarimetric characteristics,
LWIR, attention module, collaborative 2D/3D convolutional net-
works.

I. INTRODUCTION

WITH rapid developments of long-wave infrared
(LWIR) polarization imaging technology, LWIR

polarization images (LWIR-PIs) are great significance in
wide-ranging application areas, such as 3D reconstruction and
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anti-interference object detection [1], [2], [3]. Automatic road
detection from LWIR-PIs has attracted much research interest
from both academics and industries in various domains, rang-
ing from LiDAR [4] to advanced driver assistant system [5],
[6], and even autonomous driving [7].

The roads of LWIR-PIs exhibit the following typical char-
acteristics [8], [9], [10]: i) Context characteristics: roads,
cars, roadside infrastructures, and street trees constitute
the local context features, while the surrounding buildings
form the global context features; ii) Geometric character-
istics: the road shape is first wide and then narrow from
the camera’s perspective; and iii) Polarization characteris-
tics: roads and backgrounds have different discriminative
polarization information, which is the most crucial point.
Recognizing these characteristics, until now only a few LWIR
polarization-assisted methods have been developed to enhance
the accuracy of road detection. The existing LWIR-PIs based
road detection methods can be roughly grouped into the
following two categories according to their work modes:
Polarization Physical Empirical Knowledge based Models
(PPEKM) and Statistical Learning based Models (SLM). The
PPEKM generally focuses on the accurate estimation of polari-
metric measurements and parameters of interest, and there
are only two methods, i.e., the zero-distribution of angle of
polarization (AoP) [11] and PCRL (Polarization characteristics
of the road in LWIR) [9]. In PCRL, the performance of
road pattern detection is enhanced by integrating intensity
information and temporal information, as well as leveraging
the distinct polarization feature between the road area and the
ground in LWIR-PIs. The limitations of these methods lie
in their inability to leverage the rich high-level information
embedded within the LWIR images and dataset. On the
contrast, the SLM mainly exploits Deep Convolutional Neural
Networks (DCNN) that have powerful feature extraction and
feature learning capabilities, i.e., PolarNet [12], which has
become the cutting-edge model with state-of-the-art perfor-
mance. However, the PolarNet has not consider effectively the
correlation among multiple polarization characteristics.

Each of the aforementioned methods possess their own
distinct advantages, and do play a role in stimulating the
development of this important area. Nevertheless, it still
remains a huge challenge for reliable road detection from
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Fig. 1. Typical challenges in road detection from the LWIR-PIs. (a) road
discontinuities are induced due to shadow phenomena and the occlusion of
trees. (b) the similarity between a road and its surrounding ground leads to
missing detection and misclassification.

LWIR-PIs, including the following tricky issues: i) Road
detection is a standard imbalanced-learning problem since
the road often takes up a small proportion in a road image;
ii) LWIR-PIs have the characteristics of low resolution and
time-varying (the gray levels of LWIR-PIs exhibit variations
between daytime and nighttime LWIR-PIs); iii) Road detection
models cannot achieve the best performances in terms of
high-accuracy and lightweight; and iv) Surrounding objects
on the roadside interfere with road recognition, for instance
vehicles on the road and shadows of vegetation or buildings on
the roadside. As depicted in Fig. 1, one of the usual troubles
in road detection is associated with tree shadows leading
to road discontinuity (as can be seen in the first example).
Another challenge is that the similarity between a road and
its surrounding ground leads to missed detection and wrong
classification (as shown in the second example).

To cope with these issues, we present a customized
LWIR-PIs based road detection model termed Lightweight
Multi-Pathway Collaborative 2D/3D Convolutional Networks
(LMPC2D3DCNet) with the purpose of improving the per-
formance of road detection. The design strategies in our
method are: i) mining and fusing plenty of low-frequency,
high-frequency and multiscale polarization information for
obtaining more accurate modeling for road regions; ii)
jointing analysis among multiple polarization characteristics,
sparse inter-channel information (along the z−axis), and
dense intra-channel information (inside the x−y plane); and
iii) distilling latent local and global context features.

To sum up, the main contributions of this work as follows:

• We analyze the inherent deficiencies of currently
automatic road detection from LWIR-PIs, and elab-
orately design the multi-path network architecture of
LMPC2D3DCNet to capture the low-frequency, high-
frequency and multiscale physical polarization coherence.
Also, it has much fewer parameters than the existing road
detection methods.

• To the best of our knowledge, it is the first endeavor to
incorporate 2D and 3D convolutional networks to balance
extraction for sparse inter-channel information and dense

intra-channel polarization information embedded in mul-
tidimensional polarization characteristics.

• A new cross 2D-3D non-local attention (C2D3DNLA)
network is proposed to derive respective latent features by
exploiting both local and global polarization correlations.

• We carry out extensive experiments on a public infrared
polarization dataset of road scenes. The experimental
results demonstrate that our proposed LMPC2D3DCNet
can enhance the performance of road detection main-
taining a competitive inferring time, and achieves
state-of-the-art performance.

The remaining of this paper is organized as follows:
Sec. II summarizes the related works of road detection from
LWIR-PIs. The details of our proposed LMPC2D3DCNet are
introduced in Sec. III. In Sec. IV, dataset, evaluation met-
rics, and implementation details are provided, and numerous
experiments are carried out to evaluate the performance of
our method for road detection with LWIR-PIs. Conclusion is
presented in Sec. V.

II. RELATED WORK

In this section, we will introduce a concise review of road
detection using LWIR-PIs and focus on the specific methods
that are most relevant to our work.

A. Road Detection Models With LWIR-PI

In the past decade, numerous works (e.g., ENet [13],
DenseASPP [14], SegNet [15], DLT-Net [16], and DAB-
Net [17]) have been conducted out on real-time road detection
using conventional RGB cameras that provide high-resolution
intensity, color, and texture information. For instance, Lu et al.
[18] used a likelihood ratio classifier to re-label each pixel of
input image and implemented a self-learner statistics model;
Qian et al. [16] developed a unified neural network DLT-Net
to detect drivable areas, lane lines and traffic objects based
on Full Convolutional Networks (FCN); and Li et al. [17]
employed the combination of dilated CNN and depth-wise
separable CNN to design a Depth-wise Asymmetric Bottle-
neck (DAB) for extracting local and contextual information.
The aforementioned technologies have proved to be highly
effective under normal lighting conditions. However, their
effectiveness will be significantly reduced in low light envi-
ronments, especially at nighttime.

To overcome this limitation, a few LWIR
polarization-assisted road detection methods have been
proposed recently. Unlike the intensity and spectrum
information used in conventional vision systems, polarization
provides not only the light intensity distribution of the
scene, but also the polarization feature distribution that
reveals characteristic information of the object such as
surface smoothness, three-dimensional (3D) normal [19], and
material composition [9]. The study of full-time road detection
from LWIR-PIs is still in its infancy. To our best knowledge,
there are three methods (i.e., the zero-distribution of AoP)
[11], PCRL [9], and PolarNet [12]) available for full-time road
detection. In PCRL, the distinct polarization characteristics in
LWIR between the road region and the ground, combined with
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the intensity and temporal information are utilized to detect
roadway patterns. Further, PCRL has also constructed the first
LWIR DoFP Dataset of Road Scene (LDDRS), filling a gap
in this field. To fully exploit polarization information, Li et al.
[12] employ a combination of FCN and spatial attention to
proposed PolarNet, a two-branch network designed for road
detection. Although much progress has been made, there is
still room to improve the performance of road detection.
A natural idea is to explore the optimization of effective
multiple polarization characteristics learning for maximizing
the distillation and fusion of low-frequency, high-frequency,
and multiscale polarization information. Our approach is
designed towards the goal of learning multiple polarization
characteristics through the multi-pathway structure networks.

B. Road Semantic Segmentation Models

In recent years, deep learning techniques have started to
emerge as an alternative approach to road extraction problems.
Numerous researchers have performed the road extraction task
as a pixel-level classification problem by using FCN, and
developed a sequence of methods. The existing methods of
road semantic segmentation methods are designed from two
different aspects: high-accuracy models (e.g., LinkNet [20],
PSPNet [21], ResUNet [22], DeepLabv3+ [23], MSAD-
Net [24]) and light-weight models (e.g., ContextNet [25],
FastSCNN [26], LRSR-net [27], and CGNet [28]). Among
high-accuracy models, U-Net [29] and LinkNet are the
highly regarded encoder-decoder structures for road semantic
segmentation. Specifically, both LinkNet and U-Net share
similar network structures that consist of a sequence of
down-sampling layers (Encoder), a series of up-sampling
layers (Decoder), and lateral connections. The key difference
lies in LinkNet optimizes the utilization of network param-
eters. Thereafter, Zhang et al. integrated residual learning
and U-Net to design a road semantic segmentation neural
networks called ResUNet [22] and achieved good results.
A highly esteemed network framework, DeepLabv3+, pro-
posed a combination of spatial pyramid polling module and
encoder-decoder structure to construct a state-of-the-art road
semantic segmentation model that has been unrivaled for
an extended period. Although these methods exhibit high-
accuracy, they have a large number of parameters such as
DeepLabv3+ of 59.33M and PSPNet of 65.57M, so that
they are not directly transferable to real-time applications or
embedded devices.

To avoid the above dilemma, many light-weight road extrac-
tion models have been proposed. For instance, Poudel et al.
reported a new deep neural network framework, ContextNet,
which builds on factorized convolution, network compression
and pyramid representation to real-time detect road with
low computational cost [25]; Sun et al. presented a dilated
joint convolution module to enhance the extraction of local
features while reducing the overall model parameters [27].
Their model’s accuracy rate increased by at least 3% compared
with the existing advanced detection methods; and in CGNet,
Wu et al. proposed the context guided block to learn the
joint feature of both local feature and surrounding context,

and improve the joint feature with the global context [28].
Unfortunately, these methods with a small footprint suffer
from low accuracy in road extraction due to their adherence
to image classification design principles while ignoring the
inherent properties of road semantic segmentation.

On the other hand, several technologies are proposed to
enhance road detection or traffic accident detection [30], [31],
[32] by using a combination of 2D and 3D information. For
example, a pavement crack detection method that integrates
2D grayscale images and 3D laser scanning data based on
Dempster-Shafer theory is proposed [33]. Hu et al. [34]
employed both 2D and 3D information from the images taken
at high speed to detect 3D pavement defects. Bayoudh et al.
[35] introduced hybrid 2D-3D CNNs models based on the
transfer learning for traffic sign recognition and semantic road
detection. Nevertheless, this work merely combines 2D and
3D CNNs and consider little about the correlations between
hierarchical features from 2D and 3D CNNs. Furthermore,
the aforementioned techniques demonstrate high effectiveness
in normal lighting conditions, however, their efficacy will be
significantly diminished in low light environments, particularly
during nighttime.

Unlike the intensity information used in conventional vision
systems, the property of polarization offers intriguing physical
characteristics of light, enabling the extraction of distinctive
information about an object, such as its surface smoothness,
3D normal, and material composition. To push the envelope
further, we exploit the design ethos of semantic segmentation
and propose a novel model architecture by analyzing compre-
hensively multiple polarization characteristics, 2D plane, and
3D space, which is a light-weight network specially tailored
for full-time road detection to achieve high accuracy.

C. Basic Knowledge of Polarization

High-dimensional optical information, especially polariza-
tion as an electromagnetic physical characteristic, is vital
for comprehensive non-invasive characterization of targets in
different scenarios [36], [37], [38]. Techniques that image
the polarization, also known as polarization parameters, have
aroused wide applications in the domains of remote sensing,
marine resources detection, etc [39], [40], [41], [42], [43],
[44]. Optical polarization information often is characterized
by Stokes vector S [45], which can be obtained using polar-
ization imaging system, e.g., LWIR DoFP polarization camera
whose surface integrates a polarization modulator consisting of
micro-polarizers with four different polarization orientations
of 0

◦

, 45
◦

, 90
◦

, and 135
◦

. The Stokes parameters can be
expressed as:

S =

 S0
S1
S2

 =

 I0◦ + I90◦

I0◦ − I90◦

I45◦ − I135◦

 (1)

where S0 refers to the total intensity received by the camera;
S1 represents the intensity difference between the vertical and
horizontal components; S2 denotes the intensity difference
between the 45

◦

and 135
◦

components. According to Eq. (1),
the degree of polarization (DoP) and the angle of polarization
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Fig. 2. The probability distributions of S0, AoP, and DoP of the road and
the background for all images in the LDDRS dataset.

(AoP) can be described as:

DoP =

√
S1

2
+ S2

2

S0
(2)

AoP =
1
2

arctan
[

S2

S1

]
(3)

Previous studies [9], [10], [11], and [12] have provided
a detailed analysis of the road polarization characteristics
in LWIR. Herein three key points are summarized: 1) The
polarization state of a road is dominated by the polarized
emitted light, and the AoP of the road is close to zero
with respect to the horizontal plane; 2) As the physical
properties such as surface smoothness, radiation condition,
and normal direction of the road regions are similar, the
AoP is also similar; 3) Roads and backgrounds have different
discriminative polarization information. Fig. 2 also presents
the probability distributions of the S0, DoP, and AoP for
both road and background in 2113 images from the LDDRS
dataset [11]. By examining Fig. 2, it is evident that the majority
of AoP values for the road are in close proximity to zero,
and there exist significant disparities between the probability
distribution curves for both the road surface and background.
This indicates that DoP and AoP are more suitable for road
detection.

III. LIGHTWEIGHT MULTI-PATHWAY COLLABORATIVE
2D/3D CONVOLUTIONAL NETWORKS FOR

FULL-TIME ROAD

As shown in Fig. 3, we develop an LMPC2D3DCNet, which
is an infrared polarization-empowered lightweight networks
for full-time road detection. In this section, we will elaborate
the LMPC2D3DCNet architecture.

A. Overview of Our Approach

The overall pipeline of our proposed LMPC2D3DCNet is
illustrated in Fig. 3, which mainly consists of five components.
Starting from the input LWIR polarization images (LWIR-
PIs) of nighttime or daytime, LMPC2D3DCNet first employs
a BM3D and a polarization difference model to denoise
and de-mosaic respectively. Meanwhile, features extracted
from LWIR-PIs, S0, DoP, and AoP are fed into Shallow
Feature Extraction (SFE) module and subsequently input into
MPC2D3DCNet to distill the relationship between polarization
characteristics and space. The SFE module includes two col-
laborative 2D/3D CNN layers (refer to Section III-C for more

details) with a kernel size of 3×3. Finally, MPC2D3DCNet
performs the road detection using Road Detection module that
comprises two collaborative 2D/3D CNN layers with a kernel
size of 1×1. Our designed enhanced loss function module,
which is composed of Content Loss, Adversarial Loss, and
Texture Gradient Loss, is employed to study the model. Note
that the Gradient module and Pre-Processing stage will be
described in the Section III-E and IV-A, respectively.

B. Multi-Pathway Collaborative 2D/3D
Convolutional Networks

LMPC2D3DCNet is designed to automatically identify
road region through distilling the relationship between
polarization characteristics and 2D plane or 3D space
from multi-pathway collaborative 2D/3D convolutional net-
works (MPC2D3DCNet). We show the detailed network
structure of MPC2D3DCNet in Figs. 4 and 5. The pro-
posed MPC2D3DCNet mainly contains three parts: multi-
pathway encoder, multi-pathway decoder, and cross-space skip
connection.

1) Multi-Pathway Encoder (MPE): Inspired by the collabo-
ration of diverse neural cells in achieving a vital function, the
MPE, whose structure is shown in Fig. 4, is constructed by
five types of neural cells, as depicted in Fig. 5. The modules
in Figs. 5 (a) and (b) have a single 2D or 3D block, while
the modules in Figs. 5 (c), (d) and (e) contain both the
2D and 3D blocks. Moreover, the module in Fig. 5 (e) is
also equipped with a new cross 2D-3D non-local attention
network (C2D3DNLA). The 2D or 3D block consists of
two 2D or 3D convolutional layers, followed by the instance
normalization and the LeakyReLU activation function. The
MaxPooling operation is employed during the encoding stage
to reduce spatial resolution and aggregate long-range informa-
tion. Specifically, MPE’s structure is a standard triangle, which
consists of two stems and cross-space information transfer
neural cells, i.e., the module in Fig. 5(e). Both stems primarily
transmit 2D and 3D information that corresponds to the right
and left data stream pipes of MPE. The interaction between 2D
and 3D information of the branches on the two stems through
a collaborative 2D/3D CNN block, which then propagates
to more distant branches. Its primary goal is to distill more
discriminative features.

2) Multi-Pathway Decoder (MPD): Symmetrically, the
MPD, whose structure adopted in [46] is shown in Fig. 6,
consists of three types of neural cells. Fig. 7 shows the basic
modules of the MPD. The modules in Figs. 7 (a) and (b)
have a single 2D or 3D block, while the module in Fig. 7 (c)
includes both the 2D and 3D blocks. The MPD adopts linear
interpolation to gradually recover the spatial resolution of
feature maps.

3) Cross-Space Skip Connection: How to harness MPE
and MPD through skip connection is of great significance
in relation to stimulating the strength of model effectively.
We incorporate skip connections (e.g., M P Ea 99K M P Da) to
facilitate the exchange of low-level information between the
encoder and decoder, thereby preserving low-level features and
achieving multiscale feature fusion. Herein the overall process
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Fig. 3. Overall architecture of the proposed LMPC2D3DCNet. LMPC2D3DCNet is composed of three main parts: the pre-processing module, the
multi-pathway collaborative 2D/3D convolutional networks (MPC2D3DCNet), and the enhance loss function module.

Fig. 4. The architecture of the multi-pathway encoder.

Fig. 5. The basic modules of the multi-pathway encoder.

of skip connections can be expressed as:

F = Concat [F2D
skip⊖F3D

skip, U (F2D)⊖U(F3D)] (4)

where U(·) denotes a trilinear interpolation upsampling oper-
ation, and ⊖ represents element-wise subtraction.

Remarkably, the designed MPC2D3DCNet has three advan-
tages: i) MPC2D3DCNet integrates features from multiple
pathways, enabling the learning of multi-level representations
and enhancing expressive capacity; ii) MPC2D3DCNet incor-
porates numerous cross-space skip connections that facilitate

Fig. 6. The architecture of the multi-pathway decoder.

Fig. 7. The basic modules of the multi-pathway decoder.

the propagation of information, particularly low-frequency
information and gradients; iii) MPC2D3DCNet exploits the
merit of 2D (high detection accuracy of the easily recog-
nized regions in 2D view) and 3D (high smoothness of 3D
scene contour) representations simultaneously to model road
regions [46].

C. Collaborative 2D/3D CNN

The main idea behind collaborative 2D/3D CNN mod-
ule (C2D3DC) is to balance the semantic extraction gap
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Fig. 8. Collaborative 2D/3D convolutional neural network.

between sparse inter-channel polarization information and
dense intra-channel polarization feature information. The 2D
CNNs only capture features in the x-y plane with even
receptive fields (e.g., the spatial information of DoP), resulting
in severe underfitting of inter-slice features. On the other
hand, although 3D CNNs can capture inter-slice correlations,
they suffer from overrepresentation for highly discontinuous
long-range sparse information along the z−axis, which makes
the network prone to over-fitting. We propose an elegant
solution to remedy this issue by combining 2D and 3D
convolutional neural networks. Fig. 8 illustrates detailed col-
laborative architecture. Specifically, given a group 3D feature
P∈RC×D×H×W composed of S0, DoP, and AoP, the overall
process of C2D3DC is summarized as:

P̄2D = fconv2D (R (P)) (5)

P̄3D = fconv3D (P) (6)

P̄O = abs (R (P̄2D) ∪ P̄3D−R (P̄2D) ∩ P̄3D) (7)

where fconv2 D(·) and fconv3 D(·) denote 2D and 3D con-
volution operations, respectively; R(·) represents Reshape
operation. Eq. (7) is utilized to discard the redundant features
and decrease computational overhead.

D. Cross 2D-3D Non-Local Attention

As a matter of fact, convolutional operation only processes
local neighborhood information. In this work, inspired by
non-local neural networks [47], we proposed cross 2D-3D
non-local attention (C2D3DNLA) for capturing long-range
dependencies between 2D plane and 3D space. A schematic
of C2D3DNLA is shown in Fig. 9.

The C2D3DNLA consists of two parts: channel non-local
attention (CNLA) and spatial non-local attention (SNLA).
Given two input feature maps F2D

∈RC×H×W and
F3D

∈RC×D×H×W , the output of the CNLA (F’) and the
output of SNLA (F”) can be expressed as:

F’ = Mc (F2D;F3D) ⊕ F3D (8)

F” = Ms (F2D;F3D) ⊕ F3D (9)

where Mc (F2D;F3D) represents CNLA map, Ms (F2D;F3D)
represents SNLA map, and ⊕ denotes element-wise sum. Mc
(F2D;F3D) and Ms (F2D;F3D) can be calculated as follows:

Mc (F2D;F3D) = S(T (F2D
R ) ⊗ F3D

R ) ⊗ F3D
R (10)

Ms(F2D; F3D) = S(A(F2D
R ) ⊗T (F3D

R )) ⊗A(T (F3D
R ))

(11)

Fig. 9. The cross 2D-3D non-local attention module.

where F2D
R andF3D

R represent the F2D and F3D operated
by the Reshape operation respectively; S(·), T (·), and A(·)

represent Softmax, Transpose, and AvgPooling operations; ⊗

denotes the multiplication of corresponding elements.

E. Enhanced Loss Function

Unlike existing methods, we adopt three losses to guide
objective function Lobj : a content loss Lcon , a texture gradient
loss Lteg , and an adversarial loss Ladv:

Lobj = λcon · Lcon + βteg · Lteg + µadv · Ladv (12)

where λcon , βteg , and µadv are employed to adjust the wights
of different loss items. Increasing λcon , βteg , and µadv can get
better perceived quality road regions, and vice versa.

1) Content Loss Lcon: Content Loss Lco is designed to
improve the objective quality of the identified road by min-
imizing the L2−norm of error. In this work, it includes
two pixel-level reconstruction losses, i.e., L2 loss L2 and
perceptual loss Lper [48]:

L2 =
∥∥Igt − Idet

∥∥2
2 (13)

Lper =
∥∥8(Igt) − 8(Idet)

∥∥2
2 (14)

Lcon = L2 + Lper (15)

where Igt and Idet mean the ground-truth and detected road
images; ∥·∥2 denotes the L2−norm; 8 denotes the feature
extractor of VGG19 [49].

2) Texture Gradient Loss Lteg: The Content Loss Lco can
makes the detected road regions close to the ground-truth in
pixel-level, thus mitigating the non-smoothness problem. Nev-
ertheless, it neglects the local variation relationship of the pixel
values, leading to an overly smooth generated road region.
To bring out more clearer edges in the detected road images,
preserving the local variation relationship of image pixels is
crucial. The gradient of an image can describe the local change
of pixel value, usually expressed as the edge and texture
details. Fig. 10 shows this problem, where the gradient image
is calculated based on gradient module. The gradient image
has more detailed information, and thereby the high-quality
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Fig. 10. Comparison of LWIR S0 image and gradient image.

road edge can be obtained. Therefore, we incorporate a texture
gradient loss term into the objective function.
Lteg works on the gradient images to learn road regions

with better perception quality and object quality, which can
be expressed as

Lteg =
∥∥Sobel(Igt ) − Sobel(Idet )

∥∥2
2 (16)

Sobel (2) = [∇x , ∇y]
T (17)

where ∇x = Conv2D (x,K) and ∇y = Conv2D (
y,KT )

denote the gradient information in the horizontal direction and
vertical direction, respectively; Sobel(·) is Sobel operator. K is
the parameters of the 2D convolution kernel. In this work,
we set K as

K =

 1 0 −1
2 0 −2
1 0 −1

 (18)

3) Adversarial Loss Ladv: The solution is highly ill-posed
as the detection result derived by minimizing L2−norm is
equivalent to average value of multiple potentially practical
feasible solutions. Thus, using Lcon and Lteg solely cannot
ensure texture detail information rich enough. To remedy
this issue, standard GAN loss function is introduced for
minimizing the loss between reconstructed and ground-truth
images, and written as,

Ladv = Egt
[
log D(Igt )

]
+ Erec[log (1−D(Idet ))] (19)

where structure of discriminator D is a PatchGAN [50];
E [·] represents the expectation. It further improves the road
detection and meanwhile maintains the smooth edges quality.

IV. RESULT AND DISCUSSION

In this section, we will first provide a description
of the dataset and then present the training details of
LMPC2D3DCNet. Next, we will introduce the evaluation
metrics. Subsequently, we will perform both qualitative and
quantitative assessments of the results produced by our
LMPC2D3DCNet and compare it with the state-of-the-art
methods. Finally, series of ablation studies are conducted
to demonstrate the effectiveness of each component in
LMPC2D3DCNet. Additionally, we will also analyze the
efficiency and failure cases.

A. Dataset

In order to experimentally demonstrate the effectiveness of
our proposed LMPC2D3DCNet, we train and verify it on
a LWIR DoFP dataset of road scene (LDDRS) [11], which
is currently the only publicly available high-quality dataset.

The images in LDDRS are photographed using an uncooled
infrared DoFP camera with 512×640 resolution in 14 bits.
The dataset consists of 2113 images, which provides both
infrared intensity (S0) and polarization information. In the
pre-processing stage, all images are first denoised using the
BM3D [51] and de-mosaiced using a polarization difference
model [52]. We then calculate S0, DoP, and AoP as described
in Eqs. (1), (2) and (3). The road regions of all images are
manually annotated, covering urban road and highway both
daytime and nighttime. Also, the LDDRS includes different
traffic situations, e.g., different numbers of cars and pedes-
trians in the road scenario, and many shadow regions and
areas obscured by trees, which can effectively validate our
proposed method. For more detailed information on the dataset
construction, please refer to ref [11]. Finally, we randomly
selected 1960 images and 106 images as the training set
and validation set (VAL106), respectively. The remaining
317 images constitute the testing set (TEST317).

B. Training Setting

All experiments are carried out on Linux Server Intel Core
i7-7700 CPU @3.6Hz 48.0GB of RAM, and Python 3.7 pro-
gramming. The proposed LMPC2D3DCNet are implemented
in the PyTorch framework [53]. The trade-off parameters in
Eq. (12) λcon , βteg , and µadv are empirically set as 1, 0.10,
and 0.005, respectively, with numerous experiments. At the
training procedure, we adopt the Adam algorithm as the
optimizer to optimize the model parameters with momentum
term (β1 = 0.9 and β2 = 0.999). Note that we do not employ
any data augmentation techniques. The initial learning rate is
set to 0.001, and the learning rate is reduced to half of the
original every 15 epochs. The models are trained on a single
Nvidia GeForce RTX 3090 GPU with a min-batch size of 8.

C. Evaluation Metrics

Seven widely recognized metrics are employed to compre-
hensively evaluate the performance of our method for road
detection, i.e., precision (PRE), recall (REC), overall accuracy
(OA), Matthew’s correlation coefficient (MCC), F1−Score
(F1), Intersection over Union (IoU), and balanced error rate
(BER). Among them, the larger the values of PRE, REC,
OA, MCC, F1, and IoU, the better the road surface detec-
tion performance, and the smaller the BER, the better the
detection results. The MCC measures the correlation between
the expected class and the predicted class. These evaluation
indexes are calculated as shown in the following equations:

P RE =
T P

T P + F P
(20)

REC =
T P

T P + F N
(21)

O A =
T P + T N

T P + F P + T N + F N
(22)

MCC =
T P×T N −F P×FN

√
(T P+F P)×(TP+FN)×(TN+FP) × (TN+FN)

(23)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on April 12,2024 at 01:08:19 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I
QUANTITATIVE EVALUATIONS WITH THE STATE-OF-THE-ART METHODS ON LDDRS TESTING DATASET, NUMBER HIGHLIGHTED WITH RED, GREEN,

AND BLUE TO INDICATE THE BEST THREE RESULTS. ↑&↓ DENOTE LARGER AND SMALLER IS BETTER, RESPECTIVELY

F1 =
2T P

2T P + F P + F N
(24)

I oU =
T P

T P + F P + F N
(25)

B E R = 1 −
1
2

× (
T P

T P + F N
+

T N
T N + F P

) (26)

where TP (true positive) refers to the number of correctly
identified road regions at the pixel-level; FP (false positive)
means the number of not correctly identified road regions
at the pixel-level; TN (true negative) means the number of
correctly identified background regions at the pixel-level; FN
(true negative) means the number of not correctly identified
background regions at the pixel-level.

In addition, we adopt Parameters (Params) and floating
point operations (FLOPs) to evaluate the complexity of dif-
ferent methods.

D. Comparison With State-of-the-Art Methods

In order to demonstrate the effectiveness of the pro-
posed LMPC2D3DCNet, we conduct comparative experi-
ments on the LDDRS dataset. The road detection results

of LMPC2D3DCNet are compared with the other state-
of-the-art methods, including SegNet [15], LinkNet [20],
UNet [29], ERFNet [54], ResUNet [22], Unet++ [55],
UNet3+ [56], DABNet [17], LRSR-net [27], ContextNet [25],
DeepLabv3+(Xception) [23], DeepLabv3+(ResNet101) [23],
ENet [13], PSPNet [21], DenseASPP [14], MSADNet [24],
FastSCNN [26], LaneNet [57], LDNet [58], and DDRNet [59].
For an objective and fair comparison, all methods are trained
from scratch on the training set of LDDRS. During the test
phase, the testing set containing daytime and nighttime is used
and nine metrics mentioned above are counted.

1) Quantitative Evaluation: The quantitative experimental
results of LMPC2D3DCNet and other methods are presented
in Table I. It is straightforward to find from Table I that
LMPC2D3DCNet consistently surpasses other state-of-the-
art methods concerning all seven evaluation indexes except
for PRE. More specifically, compared with the second-best
method LRSR-net, the REC, OA, MCC, IoU, BER, and F1
values of LMPC2D3DCNet are 96.68%, 99.45%, 96.46%,
93.85%, 1.80%, and 96.72%, respectively, which are improve-
ment of approximately 2.70%, 0.15%, 1.15%, 1.89%, 40.98%,
and 1.11% over LRSR-net, respectively. It has not escaped
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Fig. 11. Ranking of the methods in the global performance evaluation. Our proposed LMPC2D3DCNet and other methods are ranked according to the sum
of the Z-scores of all the evaluation metrics on the LDDRS test dataset.

from our notice that although PSPNet obtains the high-
est PRE (99.64%), its OA, MCC, IoU, BER, and F1
scores, which can better reflect the overall performance,
are 0.51%, 3.30%, 5.77%, 57.75% and 3.09% lower than
those of LMPC2D3DCNet, respectively. It is noteworthy
that the proposed LMPC2D3DCNet is the sole approach
among 22 methods that achieves OA>99.45, MCC>96.46,
IoU>93.85, BER<1.80, and F1 >96.72 simultaneously on
the testing set of LDDRS. Furthermore, Wilcoxon’s rank sum
test [60] is used to test for differences in the distributions
of IoU and F1 values between our LMPC2D3DCNet and
other compared methods. Specifically, the differences between
our method and other methods in the IoU and F1 values are
statistically significant, which have a p−value <0.001 in the
Wilcoxon’s rank sum test.

Since the source codes of PCRL [9] and PolarNet [12] are
not publicly available, we have extracted their results from
their respective literature. Concretely, the PRE, REC, and IoU
of LMPC2D3DCNet are 3.80%, 1.73%, and 5.31% higher
than those reported by PCRL, respectively; 1.33%, 0.46%, and
1.71% higher than those reported by PolarNet, respectively.

We also rank these methods using the sum of Z-scores of all
evaluation indexes to analyze the comprehensive performance
of various road detection methods. As shown in Fig. 11, it can
be found that LMPC2D3DCNet yields the best comprehensive
performance among all methods.

2) Qualitative Comparison: The visual comparison
between LMPC2D3DCNet and the other comparison methods
is shown in Fig. 12. Here we select six methods for
illustration. The first five columns and the last five columns
show a comparison of different methods of road detection
during daytime and nighttime, respectively. By carefully
observing Fig. 12, the following four phenomena can be
seen: i) When the shadow on the bottom of the car obscures

the road (see first column), the proposed LMPC2D3DCNet
can achieve better road detection results that extremely close
to the ground truth. However, the other methods all suffer
from serious false detection in this case. ii) The second and
tenth columns reveal that other methods tend to misclassify
car glass as road, while LMPC2D3DCNet exhibits relatively
superior performance. iii) The comparison results at the edges
of road or car detection are presented in columns three, seven,
eight, and nine. These cases show that LMPC2D3DCNet
enjoys smoother results and exhibits superior performance at
the edge regions of the road. Conversely, ResUNet performs
most poorly among these methods. iv) LMPC2D3DCNet also
exhibits a stable generalization capability across daytime and
nighttime.

E. Model Analysis

This subsection provides the advantages of our proposed
MPC2D3DCNet by quantitative analysis.

1) Effect of Different Loss Configurations: To research
the influences of various loss configurations, we train the
proposed LMPC2D3DCNet with different losses (i.e., Binary
Cross-entropy (BCE), MSE loss L2, perceptual loss Lper , Tex-
ture Gradient Loss Lteg , standard adversarial loss Ladv , and
their combinations). We employ the BCE as the comparison
baseline. Table II summarizes the performance comparison
of different losses on both LDDRS validation and testing
datasets. As shown in Table II, the performance of L2+Lper +

Lteg + Ladv is superior to those of the other losses. Taking
results of testing set as an example, L2 +Lper +Lteg +Ladv

reaches 0.88%, 9.15%, 60.66%, and 5.61% average enhance-
ments of OA, IoU, BER, and F1 scores, respectively, compared
to the other four loss configurations. The results demonstrate
that L2 +Lper +Lteg +Ladv is much more suitable for road
detection task.
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Fig. 12. Detection results of different comparison methods. Green regions, blue regions, and red regions represent true positive, false positive, and false
negative, respectively.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT LOSS CONFIGURATIONS ON BOTH LDDRS VALIDATION DATASET AND TESTING DATASET, NUMBER

HIGHLIGHTED WITH RED, GREEN, AND BLUE TO INDICATE THE BEST THREE RESULTS. ↑&↓ DENOTE LARGER
AND SMALLER IS BETTER, RESPECTIVELY

2) Effect of Different Data Type Configurations: This
section examines to what extent the introduced polariza-
tion characteristics can help LMPC2D3DCNet to detect road
regions. Table III summarizes the discriminative performance
comparison of these features including S0, S0+DoP, S0+AoP,
and S0+ DoP + AoP. It is observed from Table III that, the
performance of S0+ DoP + AoP consistently transcends other
features. The introduction of the DoP and AoP obtains 0.27%
5.44%, 45.37%, and 2.87% average improvements of OA, IoU,
BER, and F1 scores, respectively, compared with S0on both
LDDRS validation and testing datasets. The above comparison
results can demonstrate that the impact of feature combination
should be positive.

3) Effect of Different CNN Configurations for
MPC2D3DCNet: In contrast to previous methods, the
underly hypothesis behind our method is that the proposed
MPC2D3DCNet can more effectively model the contextual
semantic relationship between road and its background, due
to that the MPE can gradually enrich the dense detailed cues
in the x-y plane and scene contour cues along the z-axis
provided by multiple polarization characteristics. To illustrate
this point, we respectively train two modified models: (1)
constructing MPE and MPD using pure 2D CNNs, and (2)
building MPE and MPD using pure 3D CNNs. Subsequently,
the performances of these models are compared to that of the
proposed MPC2D3DCNet. Table IV reports the performance
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT DATA TYPE CONFIGURATIONS ON BOTH LDDRS VALIDATION DATASET AND TESTING DATASET, NUMBER

HIGHLIGHTED WITH RED TO INDICATE THE BEST RESULTS. ↑&↓ DENOTE LARGER AND SMALLER IS BETTER, RESPECTIVELY

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT CONFIGURATIONS FOR MPC2D3DCNET ON BOTH LDDRS VALIDATION DATASET AND TESTING

DATASET, NUMBER HIGHLIGHTED WITH RED TO INDICATE THE BEST RESULTS. ↑&↓ DENOTE LARGER AND
SMALLER IS BETTER, RESPECTIVELY

TABLE V
PERFORMANCE COMPARISON BETWEEN WITH AND WITHOUT C2D3DNLA MODULE ON BOTH LDDRS VALIDATION DATASET AND TESTING DATASET,

NUMBER HIGHLIGHTED WITH RED TO INDICATE THE BEST RESULTS. ↑&↓ DENOTE LARGER AND SMALLER IS BETTER, RESPECTIVELY

comparison of different models on both LDDRS validation
and testing datasets. Specifically, taking the results from
the testing datasets as an example, MPC2D3DCNet based
on Collaborative 2D/3D CNN achieves significant average
OA, IoU, BER, and F1 boosts of 0.30%, 3.61%, 47.75%,
and 1.96% respectively compared to those of 2D CNN,
as well as boosts of 0.34%, 3.29%, 38.89%, and 1.77%
respectively compared to those of 3D CNN. This indicates
that the proposed MPC2D3DCNet method, which considers
the relationship among multiple polarization characteristics,
sparse inter-channel information, and dense intra-channel
information, has broken through the bottleneck of the
previous methods, which ignore the unique spatial property
of polarization.

4) Effectiveness of C2D3DNLA Module: This purpose of
this section is to further experimentally demonstrate the
efficacy of our proposed MPC2D3DCNet with and without

C2D3DNLA. We report the evaluation results of the proposed
MPC2D3DCNet with or without C2D3DNLA on the both
LDDRS validation and testing datasets in Tab. V. It can be
observed that the performance of MPC2D3DCNet is indeed
enhanced after applying C2D3DNLA. Using the results of the
testing dataset as an example, the average OA, IoU, BER, and
F1 values of using C2D3DNLA are 99.46%, 93. 97%, 1.86%,
and 96.76%, which are 0.19%, 2.80%, 49.87%, and 1.53%
higher than those of without using C2D3DNLA.

F. Discussion

1) Analysis of Efficiency: Table VI displays a comparison
of Params and FLOPs of different methods. All state-of-
the-art methods are evaluated on 512×640 images with a
single Nvidia GeForce RTX 3090 GPU using their publicly
available code. As shown in Table VI, we can observe that
the CGNet, LRSR-net, and ENet employ fewer Params, i.e.,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on April 12,2024 at 01:08:19 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE VI
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS, NUMBER HIGHLIGHTED WITH RED,

GREEN, AND BLUE TO INDICATE THE BEST THREE RESULTS

Fig. 13. Intersection over Union (IoU) v.s. model parameters. All models are
trained on the LWIR DoFP Dataset of Road Scene at resolution 512×640 from
scratch.

Fig. 14. Failure cases tend to occur on curbsides covered with unexpected
objects such as standing water, which could be caused by the limited number
of images containing curbside coverings in the training dataset. Green regions,
blue regions, and red regions represent true positive, false positive, and false
negative, respectively.

0.49M, 0.45M and 0.35M respectively, whereas the Params of
our LMPC2D3DCNet is only 0.13M (about 1

4 of CGNet, 3
10

of LRSR-net, and 7
20 of ENet). Meanwhile, our method also

gives the fourth best performance in terms of FLOPs. The
underlying factor contributing to this outcome is the exces-
sive computational overhead incurred by the C2D3DNLA.
In the subsequent works, we will propose targeted strategies
to counter the above issue. Fig. 13 also shows intersec-
tion over Union (IoU) v.s. model parameters. Our proposed
LMPC2D3DCNet strikes a balance between high accuracy and
lightweight design, achieving the best of both worlds.

2) Analysis of Limitations: Although LMPC2D3DCNet
exhibits great robustness in most cases, when it comes to curb-
sides covered with unexpected objects (non-object shadows)
such as water, LMPC2D3DCNet offers limited superiority to
other advanced methods and cannot produce good results,
as failure cases shown in Fig. 14. This is expected because
there are only few images containing curbside coverings in
the training dataset, thus, the MPE of LMPC2D3DCNet is
unable to learn sufficient knowledge for this case, leading to
less effectiveness in road detection.

V. CONCLUSION

In this paper, we propose a novel approach
LMPC2D3DCNet designed from the ground up specifically
for identifying road regions by combining DL and LWIR-
PIs. The LMPC2D3DCNet leverages intensity information,
DoP and AoP, along with a novel multi-pathway joint
2D/3D convolutional networks architecture, to establish
the correlations among polarization, 2D plane, 3D space,
and road region. Extensive experiments on a public
infrared polarization dataset of road scenes demonstrate
that our proposed LMPC2D3DCNet achieves state-of-the-
art performance. However, there are still challenges in
effectively utilizing multiple polarization characteristics to
enhance full-time road detection, and further advancements
are needed in characterizing polarization information and
developing light-weight network model. Last but not least,
much improvement has been achieved by our proposed
LMPC2D3DCNet. We remain committed to making progress
in these areas
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