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Abstract

Polarization computational ghost imaging (PCGI) often requires a large number of samples to
reconstruct the targets, which can be optimized by reducing sampling rates with the aids of deep-
learning technology. In this paper, the random patterns and successive orthonormalization instead of
common Hadamard patterns, has been introduced into the deep-learning based PCGI system to
recover high-quality images at lower sampling rates. Firstly, we use a polarized light to illuminate the
target with random patterns for sampling. Then we can obtain a vector of bucket detector values
containing the reflective information of the target. Secondly, we orthonormalize the vector according
to the random patterns. Subsequently, the orthonormalized data can be input into the Improved
U-net (IU-net) for reconstructing the targets. We demonstrate that higher-quality image of the testing
sample can be obtained at a lower sampling rate of 1.5%, and superior-generalization ability for the
untrained complex targets can be also achieved at alower sampling rate of 6%. Meanwhile, we have
also investigated the generalization ability of the system for the untrained targets with different
materials that have different depolarization properties, and the system still demonstrates superior
performances. The proposed method may pave a way towards the real applications of the PCGI.

1. Introduction

Computational ghost imaging (CGI) has developed rapidly with the developments of modulating ability for the
optical fields in recent years [ 1, 2]. Meanwhile, the CCD camera on the reference arm can be omitted, imaging
with a single-arm light path and a barrel detector [3, 4]. It simplifies the light path and improves the performance
of ghost imaging. In comparison to traditional imaging, CGI has already prohibited great potentials in
applications, such as single-pixel imaging [5, 6], biological imaging [7—10], information encryption [11-13],
laser radar technique [ 14, 15] and imaging through atmospheric turbulence environment [16-21]. However, the
reflectivity or transmittance of targets are sometimes close to the background in many real-world scenarios,
making it difficult to identify the targets from the background by the received light intensity. Fortunately, there
always exists difference in polarization characteristics between the targets and the backgrounds. Moreover,
polarized lights also have good anti-scattering effects [22—25]. Therefore, polarization computational ghost
imaging provides additional information for contrast-enhanced target recognition in traditional ghost imaging
[26-29].

However, the CGI often requires a large number of samples and high-cost. In recent years, deep-learning
based CGI [30-33] has rapidly developed in the image classification [34] and image tracking [35], since it can
greatly reduce the sampling time and improve the CGI efficiency. In these processes, the original images and
low-quality images recovered from the CGI are used as labels and input of the network, respectively, and high-
quality images can be obtained through the iterative training network [36, 37]. Compared to previous
algorithms, deep-learning based methods demonstrate faster and more robust reconstructions. Nowadays, most
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Figure 1. The flow chart of our scheme: (a) Schematic diagram of the optical setup; (b) Data processing with orthonormalization; (c)
The IU-net recover target.

researchers use structured light with Hadamard patterns to sample the target in deep-learning based CGI [38].
With the orthogonal characteristics, Hadamard patterns can reduce the influence of scattering medium on the
CGP’s signal-to-noise ratio and obtain a clearer image [39, 40]. However, the Hadamard patterns have special
mathematical properties that affect the sampling efficiency. Hadamard patterns often appear in chunks, and this
characteristic lead to significant difference in sampling efficiency between different targets. Especially at low
sampling rates, it is difficult to train the network by using the input obtained from CGI with Hadamard patterns.

In this paper, we introduce a random illuminated pattern into the Improved U-net (IU-net) based PCGI
scheme, and the inputs of IU-net are the values obtained by bucket detector after orthonormalization
[12,41,42], which can be called as the random-pattern orthonormalization for the [U-net based PCGI (RPO-
IU-PCGI). Itis worth noting that the random pattern indicates irregular distribution of the pattern, which is
generated by a digital micromirror device (DMD) instead of a thermal or pseudo-thermal light. The obtained
data is preprocessed by orthonormalization which will not change the relation between the reference patterns
and bucket detector values. The orthonormalized values are used as the input of the IU-net. Our solution can
accurately recover the target image at a very low sampling rate, and has good generalization in complex targets
and different depolarization properties. For validation, the imaging results obtained from deep-learning based
PCGI with the proposed method and Hadamard patterns are compared. We hope the proposed method could
provide a new chance for the application of the PCGI.

2.Methodology

The optical setup for the proposed scheme is shown in figure 1(a). The light launched from a laser undergoes
through two lens and a polarizer, and random patterns are generated through DMD after the polarized light
passing. DMD is controlled by a computer. A polarization beam splitter (PBS) divides the polarized light
reflected from the target into horizontally and vertically polarized lights, which are collected by bucket detectors
(BD)IandlI, respectively. Thereupon, the intensities of horizontally and vertically components are obtained as
Sjand Sy, respectively. For conventional CGI, the target can be reconstructed by [27]:

O(x, )’) = <R(x> )’)5>m - <R(x7 y)>m<s>m> (D

where R(x,y) is the pattern after the DMD, S is the intensity value obtained at bucket detector, i.e. S; = § + S,
(-)m indicates the statistical average operator and m represents the number of measurement time. For the PCGI,
thevalueof S, = § — S, is used as the intensity S in equation (1). The difference between Sjand S, contains the
polarization information of the target [27], which will benefit to improve the imaging quality. For unknown
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targets, we do not know its depolarization characteristics. The target information (horizontal and vertical
polarization light) can still be obtained by two bucket detectors combined with a polarization beam splitter,
which is consistent with traditional polarization imaging principle.

2.1. Orthonormalization

Supposing that the object is ‘O’ and the illuminating patterns are ‘R, R; - --,Ry,’, the whole CGI in mathematics
can be expressed as:

[ R(1,1) R(2,1) - Rx )] (01, 1] (S,
R(1,1) R2, 1) - R(kxy) 02,1 S,
R=1ra,n R = Ran |l 19T lown]||T|°7 s &
| Ra(L, 1) Ry(2, 1) -+ Ru(x, ) | 0, ) | S,

From equation (2), it can be seen that it is more like solving an equation to recover image (O) by the CGI. If
all the patterns have orthogonality, it is helpful to solve this equation. However, the random patterns don’t have
orthogonal characteristics, so we have to optimize the data by using orthonormalization if we want to use the
random patterns.

Figure 1(b) show the data processing with orthonormalization. In our scheme, the Gram-Schmidt and
normalization processes are performed on the value of bucket detector [12]. To this end, a group of projection
coefficient should be calculated from the value of illumination patterns, and can be expressed as:

R, R
Cmn = =——=, (3)
Ry - Ry
ﬁl - Rl’
R, =R, - Cy - R,
Riy=R; — G5 - Ri— G- Ry,

Rm = Rm - Z Cmn . Rna (4)

where Cmn is the projection coefficient, R}, Ry, ---,Ry, are the row vector obtained from the reshaped
illumination patterns, ‘reshaped’ is to convert a matrix of size 6464 into a vector of 40961, where the value will
not change. R;, Ry, ---,R;, mean a group of orthogonal row vector calculated from Ry, R,, ---,Rp, by equation (4).
Each bucket detector value can be acquired by illuminating the target with one pattern, so the illuminating
patterns and the bucket detector value belong to a one-to-one correspondence. We will post-process the
patterns, so we need to perform same mathematical operation for the bucket detector values. By

o . al &/ al .
orthonormalizing process, the new values of bucket detectors §;, S,, ---,S,, can be created and written as:

S$i=8,
$=8-Cy-S,
83 =385 —C31- 8 — Csz- Sy,

Sm = Sm - Z Cmn . Sm (5)
n=1
gr:: = gm/||ﬁm||> (6)

where Sy, S, -++,S,, are the original values from BD. One may refer to [12] for details of the orthonormalization
process. After the above orthonormalization process, the relation between the reference patterns and the bucket
detector values is well maintained. Therefore, the orthonormalized bucket detector values can be used as the

input to the deep-learning network as show in figure 1(c), and meanwhile, the original images are used as the
labels.

2.2. Architecture of Improved U-net

Since bucket detector values contain information of the target, the network can learn the target features and
recover the image. Herein, we use an IU-net [43] based deep-learning network, as shown in figure 2. The
DenseNet [44, 45] network is used as the feature extraction layer of the [U-net. In the training process, due to
increasing number of network layers, the backpropagation process is easy to lead to gradient vanishing and
gradient explosion. In our network, the shallow and deep features are connected by introducing the skip
connection, from which the gradient update can consider the multi-layer weight information together when
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Figure 2. Schematic diagram of IU-net structure.

Table 1. Mueller matrix

elements.

Material my, My,
Steel 0.975 0.99
Stone 0.385 0.35
Wood 0.215 0.16

performing long-distance feature extraction. Each encoder consists of three layers: dense block layer, dropout
layer and max pooling layer. The difference between the encoder and decoder is that the last layer of each
decoder uses the up-pooling layer. In fact, the DenseNet is a composite layer composed of four dense blocks, and
each of them is connected to next all blocks. It makes the transfer of features and gradients more effective, and
the training process for the IU-net will also be easier.

The workflow of the utilized deep-learning network is described in the following. The first layer is an input
layer which inputs a one-dimensional vector after orthonormalization process. The second and third layers are
fully connected layers with sizes 0f 2048 x 1 and 4096 X 1, respectively. The fourth layer, a vector-to-matrix
layer, reshapes the vector with size 0of 4096 x 1 to a matrix with size of 64 x 64. The temporary image [33] enters
anetwork of U-net structures, thereby the statistical relation between matrix and the original target can be
obtained based on the IU-net encoder-decoder architecture. The convolutional layer in DenseNet uses a filter
with the kernel size of 3 x 3. As the numbers of both network and filter layers increase, a max pooling layer with a
step size of 2 x 2 reduces the dimension of the high-resolution image to half of the original. In addition, the
decoder is equivalent to the inverse process of encoder. Each decoder is also three layers, the last layer of each
decoder uses the up-pooling layer, which is an opposite process of max pooling and increases the dimension of
the low-resolution input image. After the above encoder and decoder processes, we may get an image with size of
64 x 64.In the whole network model, the activation function is a rectified linear unit (ReLU), making the IU-net
training quicker and more efficient. At the same time, the dropout layer is adopted to reduce overfitting. The [U-
net network guarantees the validity of the results, and reduces computational complexity.

3. Result and discussion

In order to investigate, an object with two parts is imaged in our proposed system, as shown in the inset of
figure 1. The digit in the middle part of the object is made of steel with high reflectivity and low depolarization
characteristic. The rest parts are the background made of stone with high reflectivity, high depolarization
properties. For comparison, we choose materials of steel, stone and wood as the targets and backgrounds here,
and their Mueller matrix parameters, describing depolarization characteristics, are summarized in table 1 [46].
We define the sampling rate as « = m /N, where m and N are the sampling number and the size of the full
image respectively. Figure 3 shows the superiority of PCGI with orthonormalization over the conventional CGI.
It presents imaging results with random patterns and full sampling rate (o = 100%), from figures 3(a) to (d)
corresponding to the PCGI with orthonormalization, CGI with orthonormalization, PCGI without
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Figure 3. Imaging with different conditions: (a) S = S, imaging by the PCGI with orthonormalization process; (b) S =S, imaging by
the CGI with orthonormalization process; () S = S, imaging by the PCGI without orthonormalization process; (d) S =S, imaging by
the CGI without orthonormalization process.

100%

Figure 4. Imaging by the PCGI with orthonormalization at different sampling rates.

orthonormalization, and CGI without orthonormalization. The size of the results in figure 3 is 64*64. It can be
seen that the introduction of polarization and orthonormalization into the CGI may significantly improve the
imaging performance with the random patterns.

We also tested the recovery effect with orthonormalization at different . It presents imaging results by the
PCGI with orthonormalization as shown in figure 4. As the v decreases, the image quality gradually decreases.
When the a reaches 20%, the image has become blurry and completely invisible in the sampling rate of 10%. So
we will use deep-learning techniques for clearly recovering targets at lower cv.

3.1. Model implementation

Indeed, higher sampling rate could help us obtain high-quality images. However, it may cost much more time,
so, it is highly desired to restore better images with lower costs. Herein, the IU-net is used to restore high-quality
targets at very low sampling rates. To test the proposal, the MNIST dataset [47] of grayscale images of
handwritten digits (0-9) is considered as a standard set of objects, consisting of 5000 images with size of 64 x 64.
Our simulation environment is an ideal state, which is regardless of environmental interference and instrument
performance. In simulations, the objects are divided into two parts. The digit and background are made of steel
and stone, respectively. During the PCGI with random patterns, the sampling rates are very low, ranging from
1% to 25%. A set of bucket detector values are obtained and input into the IU-net after orthonormalization. Due
to the difference in sampling rates, the target information obtained at different sampling rates is inconsistent. So,
we have to train network separately at different sampling rates. The percentages of the training, verification, and
testing sets are 90%, 5%, and 5%, respectively. The optimizer is stochastic gradient descent (SGD) with added
momentum, and the learning rate is 0.01. Twenty epochs are used for the training process. Negative Pearson
Correlation Coefficient (NPCC) [48, 49] are widely used in the loss function of various neural networks and can
be expressed as:

=3 (G DG, =G
VS G - 0[S (GG - G

where G; and Y; are the mean values of the ground truth G and the network output Y, respectively. The training
of the model is carried out in an image processing unit (NVIDIA RTX 3090), using the pytorch framework with
Python 3.6. In our experiments, the concrete training time was 37.4379 min (2246.27 s), and the verification
timeis 0.026 s.

NPCC =

@)

3.2. Comparison of results
The object can be clearly recovered from our IU-net even though the sampling rate of the PCGl is very low, for
both cases with Hadamard patterns and orthonormalization random patterns. In order to demonstrate, we plot
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the images obtained from the proposed deep-learning framework. In these cases, the sampling rates are too low
to restore the object directly from both CGI and PCGI methods. The size of the results in figure 5 is 64™64.
Figure 5(a) shows the images of the ground truth for comparison. Figure 5(b) is the resulted images from the
random-pattern orthonormalization for the IU-net based CGI (RPO-IU-CGI), in which the inputis S=S,, and
the sampling rate is & = 25%. Obviously, it could be difficult to recover the object when the sampling rate is
lower for the RPO-IU-CGI, even with the help of our IU-net. In contrast, the object can be completely recovered
from the RPO-IU-PCGI with low sampling rates of o« = 25% (m = 1024), 6% (m = 246), 5% (m = 205), 4%
(m=164),3% (m = 123),2% (m = 82), 1.5% (m = 62), and 1% (m = 41) respectively, as shown in figure 5(d).
Even for o = 1.5%, an extremely low sampling rate, the digits can be still well recognized from the background.
For the Hadamard-patterns IU-net based PCGI (HP-IU-PCGI) with the sampling rate of o« = 25%, 6%, 5%, 4%,
3%, 2%, 1.5%, and 1%, blurred images are observed, as shown in figure 5(c), which should be attributed to the
intensive speckles on Hadamard patterns. When o = 6%, the digits of ‘3’ and ‘5’ are almost undistinguishable
from the background. When the value of a decreases, more images become blurred and vague, leading to the
nullity of the IU-net.

To quantitatively evaluate the performance of the proposed framework, we calculated the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) of the results in the ranging from 1% to 6%. The PSNR
can be defined as:

2552
PSNR = 10 x log,,——, 8
glOMSE )

where MSE indicates the mean square error. SSIM is usually used to measure the similarity of images, consisting
of brightness, contrast, and structure. Supposing two images X and Y, the SSIM can be calculated by:

Quypy + G)Qoxy + Cy)
(W + p} + G0k + 0 + C)

SSIM(X, Y) = )
where j1, and p, are the averages of X and Y respectively, ox and oy are the variances of X and Y respectively,
oxy is the covariance of X and Y, C; and C, are two minor positive constants used to avoid a null denominator.
The value of SSIM ranges from 0 to 1. The larger the SSIM value, the higher the image similarity, and SSIM = 1
indicates that X and Y are exactly the same.

The dependences of calculated PSNR and SSIM (from 250 results of testing sets) on the sampling rate are
plotted in figure 6. It can be seen that when sampling rate o is lower, the values of PSNR and SSIM are smaller for
both HP-IU-PCGI and RPO-IU-PCGI. However, the values of PSNR and SSIM of RPO-IU-PCGI are much
larger than those of HP-IU-PCGI when the values of «v are the same. More importantly, the PSNR of HP-IU-
PCGI with a = 6% is comparable with that of RPO-IU-PCGI with o = 1%, while the SSIM of HP-IU-PCGI with
o= 6% is close to that of RPO-IU-PCGI with o = 2%. These results are consistent with the results in figures 5(c)
and (d), further demonstrating the superiority of our proposed RPO-IU-PCGI.

The superior performance of the RPO-IU-PCGI over the HP-IU-PCGI might be attributed to the following
reasons. First, the size of the minimum lump of gray value in ghost images is proportional to the speckle size of
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Figure 6. PSNR and SSIM of the results in the ranging by RPO-IU-PCGI and HP-IU-PCGI with the o from 1% to 6%.

Figure 7. (a) Hadamard patterns; (b) Random patterns.

sampling pattern. As a result, massive loss of the image details will happen when the speckle size is large.

Figure 7(a) shows a set of Hadamard patterns which are randomly selected. From space structure of the
Hadamard patterns, it is prone to appear concentrated together in bright or dark pixels, which will lead to so
many concentrated areas of the target information without collecting for the experiment at lower sampling rate
(<25%). Itis easy to see that most of them exhibit speckle patterns with large size, leading to degradation of
images quality. Second, the sampling effect of different Hadamard patterns are significantly different with each
other especially when speckle size is large. It results in large distinction in target features obtained by the bucket
detector each time. Therefore, it is difficult for the IU-net to extract the target’s features with the bucket detector
values obtained by the Hadamard patterns at a very low sampling rate. In contrast, the random sampling
patterns do not face with such challenges since their speckle size is much smaller and uniformly and randomly
distributed, as shown in figure 7(b).

3.3. Generalization
We further explore the generalization of our proposed RPO-IU-PCGI. We design the targets of Chinese
characters and English letters. The targets and background are made of steel and stone, respectively. Although
the IU-net has been trained by using the MNIST handwritten dataset, it is clearly seen that it can be used to
reconstruct the images of Chinese characters and English letters without training, as shown in figure 8(a). The
PSNR and SSIM based on these results in figure 8(a) at different sampling rates, have also been demonstrated in
figure 8(b). The target can be recovered very well when the o is 6%, demonstrating that our scheme can be
generalized at a very low sampling rate. As the sampling rate decreases, it becomes difficult to recover these
complex targets, especially the Chinese characters. For English letters that have not been trained, at a sampling
rate of 5%, one may still discriminate the targets.

We further explore the generalization of our proposed RPO-IU-PCGI for the targets with different
materials. As mentioned earlier, the objects of the dataset for the IU-net training are composed of steel and
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Figure 8. (a) Network generalization test results at different c; (b) The PSNR and SSIM of generalization test results at different cv.

stone. To verify the generalization of the network, we make the digit and background are made of steel and
wood, respectively, which have not been trained. The depolarization properties of wood is very high, and very
different with that of steel [46]. The top panel of figure 9 shows the images of the ground truth for comparison.
The results of RPO-IU-PCGI at different o are shown in figure 9(a), where the targets can be recovered very
accurately. Even the targets are made of untrained materials, we can still take advantage of differences in their
depolarization properties to recover them using our network. As long as the depolarization properties of the
target and the background are obviously different, our scheme can accurately restore the target at a very low
sampling rate.

In a practical situation, we cannot rule out the fact that the depolarization properties of the target and the
surrounding background may be very similar. So we have also explored the generalization of [U-net when the
depolarization properties of both the target and the background are similar. Figure 9(b) shows the results that
the digit and background are made of stone and wood, respectively. Due to the similarity of the depolarization
properties [46], the target is un-distinguishable when the sampling rate is extremely low. Fortunately, it can be
seen that the recovery target can be clear at a sampling rate of 25%.

4, Conclusion

In this paper, we have introduced random patterns into deep-learning based polarization computational ghost
imaging system to recover high-quality images at alow sample rate. The object was illuminated with the random
patterns. A modified deep learning network is used to automatically learn the mapping relationship between the
target and bucket detector values. The obtained data was orthonormalized and inputted into the IU-net.
Compared with the results obtained with Hadamard patterns, we demonstrated higher-quality images at alow
sample rate of 1.5% and superior generalization at a low sample rate of 6%. This is due to the superiority of the
random patterns over the Hadamard patterns for the intensive speckles. We have also demonstrated the
generalization of the designed RPO-IU-PCGI. For complex targets or materials that have not been trained, the
targets can be also accurately recovered at extremely low sampling rates. The proposed method may promote the

8



I0OP Publishing Phys. Scr. 98 (2023) 065011 CXuetal

ground
truth
Stecl-wood

. EIIIEIEEIE!I
4O || 234/5/6/7/3|9
EIIEJBEEEI

( ) Stonc-wood

Figure 9. Generalization effects of the RPO-IU-PCGI for the targets with in different materials: (a) The results for the target and
background consisting of steel and wood at different c; (b) The results for the target and background consisting of stone and wood at
different av.

practical applications of polarization computational ghost imaging, such as target identification, biomedical,
military and so on.
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