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Abstract
Polarization computational ghost imaging (PCGI) often requires a large number of samples to
reconstruct the targets, which can be optimized by reducing sampling rates with the aids of deep-
learning technology. In this paper, the randompatterns and successive orthonormalization instead of
commonHadamard patterns, has been introduced into the deep-learning based PCGI system to
recover high-quality images at lower sampling rates. Firstly, we use a polarized light to illuminate the
target with randompatterns for sampling. Thenwe can obtain a vector of bucket detector values
containing the reflective information of the target. Secondly, we orthonormalize the vector according
to the randompatterns. Subsequently, the orthonormalized data can be input into the Improved
U-net (IU-net) for reconstructing the targets.We demonstrate that higher-quality image of the testing
sample can be obtained at a lower sampling rate of 1.5%, and superior-generalization ability for the
untrained complex targets can be also achieved at a lower sampling rate of 6%.Meanwhile, we have
also investigated the generalization ability of the system for the untrained targets with different
materials that have different depolarization properties, and the system still demonstrates superior
performances. The proposedmethodmay pave away towards the real applications of the PCGI.

1. Introduction

Computational ghost imaging (CGI)has developed rapidly with the developments ofmodulating ability for the
opticalfields in recent years [1, 2].Meanwhile, the CCDcamera on the reference arm can be omitted, imaging
with a single-arm light path and a barrel detector [3, 4]. It simplifies the light path and improves the performance
of ghost imaging. In comparison to traditional imaging, CGI has already prohibited great potentials in
applications, such as single-pixel imaging [5, 6], biological imaging [7–10], information encryption [11–13],
laser radar technique [14, 15] and imaging through atmospheric turbulence environment [16–21]. However, the
reflectivity or transmittance of targets are sometimes close to the background inmany real-world scenarios,
making it difficult to identify the targets from the background by the received light intensity. Fortunately, there
always exists difference in polarization characteristics between the targets and the backgrounds.Moreover,
polarized lights also have good anti-scattering effects [22–25]. Therefore, polarization computational ghost
imaging provides additional information for contrast-enhanced target recognition in traditional ghost imaging
[26–29].

However, the CGI often requires a large number of samples and high-cost. In recent years, deep-learning
basedCGI [30–33] has rapidly developed in the image classification [34] and image tracking [35], since it can
greatly reduce the sampling time and improve theCGI efficiency. In these processes, the original images and
low-quality images recovered from theCGI are used as labels and input of the network, respectively, and high-
quality images can be obtained through the iterative training network [36, 37]. Compared to previous
algorithms, deep-learning basedmethods demonstrate faster andmore robust reconstructions. Nowadays,most
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researchers use structured light withHadamard patterns to sample the target in deep-learning basedCGI [38].
With the orthogonal characteristics, Hadamard patterns can reduce the influence of scatteringmediumon the
CGI’s signal-to-noise ratio and obtain a clearer image [39, 40]. However, theHadamard patterns have special
mathematical properties that affect the sampling efficiency. Hadamard patterns often appear in chunks, and this
characteristic lead to significant difference in sampling efficiency between different targets. Especially at low
sampling rates, it is difficult to train the network by using the input obtained fromCGIwithHadamard patterns.

In this paper, we introduce a random illuminated pattern into the ImprovedU-net (IU-net) based PCGI
scheme, and the inputs of IU-net are the values obtained by bucket detector after orthonormalization
[12, 41, 42], which can be called as the random-pattern orthonormalization for the IU-net based PCGI (RPO-
IU-PCGI). It is worth noting that the randompattern indicates irregular distribution of the pattern, which is
generated by a digitalmicromirror device (DMD) instead of a thermal or pseudo-thermal light. The obtained
data is preprocessed by orthonormalizationwhichwill not change the relation between the reference patterns
and bucket detector values. The orthonormalized values are used as the input of the IU-net. Our solution can
accurately recover the target image at a very low sampling rate, and has good generalization in complex targets
and different depolarization properties. For validation, the imaging results obtained fromdeep-learning based
PCGIwith the proposedmethod andHadamard patterns are compared.We hope the proposedmethod could
provide a new chance for the application of the PCGI.

2.Methodology

The optical setup for the proposed scheme is shown infigure 1(a). The light launched from a laser undergoes
through two lens and a polarizer, and randompatterns are generated throughDMDafter the polarized light
passing. DMD is controlled by a computer. A polarization beam splitter (PBS) divides the polarized light
reflected from the target into horizontally and vertically polarized lights, which are collected by bucket detectors
(BD) I and II, respectively. Thereupon, the intensities of horizontally and vertically components are obtained as
S and S ,^ respectively. For conventional CGI, the target can be reconstructed by [27]:

O x y R x y S R x y S, , , , 1m m m( ) ( ) ( ) ( )= á ñ - á ñ á ñ

whereR(x,y) is the pattern after theDMD, S is the intensity value obtained at bucket detector, i.e. S S S ,t = + ^

má⋅ñ indicates the statistical average operator andm represents the number ofmeasurement time. For the PCGI,
the value of S S Sp = - ^ is used as the intensity S in equation (1). The difference between S and Ŝ contains the
polarization information of the target [27], whichwill benefit to improve the imaging quality. For unknown

Figure 1.The flow chart of our scheme: (a) Schematic diagramof the optical setup; (b)Data processingwith orthonormalization; (c)
The IU-net recover target.
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targets, we do not know its depolarization characteristics. The target information (horizontal and vertical
polarization light) can still be obtained by two bucket detectors combinedwith a polarization beam splitter,
which is consistent with traditional polarization imaging principle.

2.1.Orthonormalization
Supposing that the object is ‘O’ and the illuminating patterns are ‘R R R, , m1 2 ⋅ ⋅⋅ ’, thewhole CGI inmathematics
can be expressed as:
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From equation (2), it can be seen that it ismore like solving an equation to recover image (O) by theCGI. If
all the patterns have orthogonality, it is helpful to solve this equation.However, the randompatterns don’t have
orthogonal characteristics, sowe have to optimize the data by using orthonormalization if wewant to use the
randompatterns.

Figure 1(b) show the data processingwith orthonormalization. In our scheme, theGram-Schmidt and
normalization processes are performed on the value of bucket detector [12]. To this end, a group of projection
coefficient should be calculated from the value of illumination patterns, and can be expressed as:

Cmn
R R

R R
, 3n m

n n

( )

 =

⋅
⋅

C

C C

C

R R

R R R

R R R R

R R R

,

,

,
...

, 4
n

m

mnm m n

1 1

2 2 21 1

3 3 31 1 32 2

1

1

( )


 
  

 å

=
= - ⋅
= - ⋅ - ⋅

= - ⋅
=

-

where Cmn is the projection coefficient, R R R, , , m1 2 ⋅⋅⋅ are the row vector obtained from the reshaped
illumination patterns, ‘reshaped’ is to convert amatrix of size 64*64 into a vector of 4096*1, where the valuewill
not change. R R R, , , m1 2˜ ˜ ˜⋅⋅⋅ mean a group of orthogonal row vector calculated from R R R, , , m1 2 ⋅⋅⋅ by equation (4).
Each bucket detector value can be acquired by illuminating the target with one pattern, so the illuminating
patterns and the bucket detector value belong to a one-to-one correspondence.Wewill post-process the
patterns, sowe need to perform samemathematical operation for the bucket detector values. By
orthonormalizing process, the new values of bucket detectors S S S, , , m1 2

˜ ˜ ˜¢ ¢ ⋅⋅⋅ ¢ can be created andwritten as:
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where S S S, , , m1 2 ⋅⋅⋅ are the original values fromBD.Onemay refer to [12] for details of the orthonormalization
process. After the above orthonormalization process, the relation between the reference patterns and the bucket
detector values is wellmaintained. Therefore, the orthonormalized bucket detector values can be used as the
input to the deep-learning network as show infigure 1(c), andmeanwhile, the original images are used as the
labels.

2.2. Architecture of ImprovedU-net
Since bucket detector values contain information of the target, the network can learn the target features and
recover the image.Herein, we use an IU-net [43] based deep-learning network, as shown infigure 2. The
DenseNet [44, 45]network is used as the feature extraction layer of the IU-net. In the training process, due to
increasing number of network layers, the backpropagation process is easy to lead to gradient vanishing and
gradient explosion. In our network, the shallow and deep features are connected by introducing the skip
connection, fromwhich the gradient update can consider themulti-layer weight information together when
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performing long-distance feature extraction. Each encoder consists of three layers: dense block layer, dropout
layer andmax pooling layer. The difference between the encoder and decoder is that the last layer of each
decoder uses the up-pooling layer. In fact, theDenseNet is a composite layer composed of four dense blocks, and
each of them is connected to next all blocks. Itmakes the transfer of features and gradientsmore effective, and
the training process for the IU-net will also be easier.

Theworkflowof the utilized deep-learning network is described in the following. Thefirst layer is an input
layer which inputs a one-dimensional vector after orthonormalization process. The second and third layers are
fully connected layers with sizes of 2048× 1 and 4096× 1, respectively. The fourth layer, a vector-to-matrix
layer, reshapes the vector with size of 4096× 1 to amatrix with size of 64× 64. The temporary image [33] enters
a network ofU-net structures, thereby the statistical relation betweenmatrix and the original target can be
obtained based on the IU-net encoder-decoder architecture. The convolutional layer inDenseNet uses afilter
with the kernel size of 3× 3. As the numbers of both network and filter layers increase, amax pooling layer with a
step size of 2× 2 reduces the dimension of the high-resolution image to half of the original. In addition, the
decoder is equivalent to the inverse process of encoder. Each decoder is also three layers, the last layer of each
decoder uses the up-pooling layer, which is an opposite process ofmax pooling and increases the dimension of
the low-resolution input image. After the above encoder and decoder processes, wemay get an imagewith size of
64× 64. In thewhole networkmodel, the activation function is a rectified linear unit (ReLU), making the IU-net
training quicker andmore efficient. At the same time, the dropout layer is adopted to reduce overfitting. The IU-
net network guarantees the validity of the results, and reduces computational complexity.

3. Result and discussion

In order to investigate, an object with two parts is imaged in our proposed system, as shown in the inset of
figure 1. The digit in themiddle part of the object ismade of steel with high reflectivity and low depolarization
characteristic. The rest parts are the backgroundmade of stonewith high reflectivity, high depolarization
properties. For comparison, we choosematerials of steel, stone andwood as the targets and backgrounds here,
and theirMuellermatrix parameters, describing depolarization characteristics, are summarized in table 1 [46].

We define the sampling rate asα=m/N,wheremandN are the sampling number and the size of the full
image respectively. Figure 3 shows the superiority of PCGIwith orthonormalization over the conventional CGI.
It presents imaging results with randompatterns and full sampling rate (α= 100%), from figures 3(a) to (d)
corresponding to the PCGIwith orthonormalization, CGIwith orthonormalization, PCGIwithout

Figure 2. Schematic diagramof IU-net structure.

Table 1.Muellermatrix
elements.

Material m22 m44

Steel 0.975 0.99

Stone 0.385 0.35

Wood 0.215 0.16
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orthonormalization, andCGIwithout orthonormalization. The size of the results infigure 3 is 64*64. It can be
seen that the introduction of polarization and orthonormalization into theCGImay significantly improve the
imaging performancewith the randompatterns.

We also tested the recovery effect with orthonormalization at differentα. It presents imaging results by the
PCGIwith orthonormalization as shown infigure 4. As theα decreases, the image quality gradually decreases.
When theα reaches 20%, the image has become blurry and completely invisible in the sampling rate of 10%. So
wewill use deep-learning techniques for clearly recovering targets at lowerα.

3.1.Model implementation
Indeed, higher sampling rate could help us obtain high-quality images. However, itmay costmuchmore time,
so, it is highly desired to restore better images with lower costs. Herein, the IU-net is used to restore high-quality
targets at very low sampling rates. To test the proposal, theMNISTdataset [47] of grayscale images of
handwritten digits (0–9) is considered as a standard set of objects, consisting of 5000 images with size of 64× 64.
Our simulation environment is an ideal state, which is regardless of environmental interference and instrument
performance. In simulations, the objects are divided into twoparts. The digit and background aremade of steel
and stone, respectively. During the PCGIwith randompatterns, the sampling rates are very low, ranging from
1% to 25%.A set of bucket detector values are obtained and input into the IU-net after orthonormalization. Due
to the difference in sampling rates, the target information obtained at different sampling rates is inconsistent. So,
we have to train network separately at different sampling rates. The percentages of the training, verification, and
testing sets are 90%, 5%, and 5%, respectively. The optimizer is stochastic gradient descent (SGD)with added
momentum, and the learning rate is 0.01. Twenty epochs are used for the training process. Negative Pearson
CorrelationCoefficient (NPCC) [48, 49] are widely used in the loss function of various neural networks and can
be expressed as:

NPCC
Y i j Y G i j G

Y i j Y G i j G
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whereG1 andY1 are themean values of the ground truthG and the network outputY, respectively. The training
of themodel is carried out in an image processing unit (NVIDIARTX3090), using the pytorch frameworkwith
Python 3.6. In our experiments, the concrete training timewas 37.4379 min (2246.27 s), and the verification
time is 0.026 s.

3.2. Comparison of results
The object can be clearly recovered fromour IU-net even though the sampling rate of the PCGI is very low, for
both cases withHadamard patterns and orthonormalization randompatterns. In order to demonstrate, we plot

Figure 3. Imagingwith different conditions: (a) S= Sp, imaging by the PCGIwith orthonormalization process; (b) S= St, imaging by
the CGIwith orthonormalization process; (c) S= Sp, imaging by the PCGIwithout orthonormalization process; (d) S= St, imaging by
the CGIwithout orthonormalization process.

Figure 4. Imaging by the PCGIwith orthonormalization at different sampling rates.
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the images obtained from the proposed deep-learning framework. In these cases, the sampling rates are too low
to restore the object directly frombothCGI and PCGImethods. The size of the results in figure 5 is 64*64.
Figure 5(a) shows the images of the ground truth for comparison. Figure 5(b) is the resulted images from the
random-pattern orthonormalization for the IU-net basedCGI (RPO-IU-CGI), inwhich the input is S= St, and
the sampling rate isα= 25%.Obviously, it could be difficult to recover the object when the sampling rate is
lower for the RPO-IU-CGI, evenwith the help of our IU-net. In contrast, the object can be completely recovered
from the RPO-IU-PCGIwith low sampling rates ofα= 25% (m= 1024), 6% (m= 246), 5% (m= 205), 4%
(m= 164), 3% (m= 123), 2% (m= 82), 1.5% (m= 62), and 1% (m= 41) respectively, as shown infigure 5(d).
Even forα= 1.5%, an extremely low sampling rate, the digits can be still well recognized from the background.
For theHadamard-patterns IU-net based PCGI (HP-IU-PCGI)with the sampling rate ofα= 25%, 6%, 5%, 4%,
3%, 2%, 1.5%, and 1%, blurred images are observed, as shown infigure 5(c), which should be attributed to the
intensive speckles onHadamard patterns.Whenα= 6%, the digits of ‘3’ and ‘5’ are almost undistinguishable
from the background.When the value ofα decreases,more images become blurred and vague, leading to the
nullity of the IU-net.

To quantitatively evaluate the performance of the proposed framework, we calculated the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) of the results in the ranging from1% to 6%. The PSNR
can be defined as:

PSNR 10 log
255

MSE
, 810

2

( )= ´

whereMSE indicates themean square error. SSIM is usually used tomeasure the similarity of images, consisting
of brightness, contrast, and structure. Supposing two images X and Y, the SSIM can be calculated by:
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where Xm and Ym are the averages of X and Y respectively, Xs and Ys are the variances of X and Y respectively,

XYs is the covariance of X and Y,C1 andC2 are twominor positive constants used to avoid a null denominator.
The value of SSIM ranges from0 to 1. The larger the SSIMvalue, the higher the image similarity, and SSIM= 1
indicates that X and Y are exactly the same.

The dependences of calculated PSNR and SSIM (from250 results of testing sets) on the sampling rate are
plotted infigure 6. It can be seen that when sampling rateα is lower, the values of PSNR and SSIM are smaller for
bothHP-IU-PCGI andRPO-IU-PCGI.However, the values of PSNR and SSIMof RPO-IU-PCGI aremuch
larger than those ofHP-IU-PCGIwhen the values ofα are the same.More importantly, the PSNRofHP-IU-
PCGIwithα= 6% is comparable with that of RPO-IU-PCGIwithα= 1%,while the SSIMofHP-IU-PCGIwith
α= 6% is close to that of RPO-IU-PCGIwithα= 2%. These results are consistent with the results infigures 5(c)
and (d), further demonstrating the superiority of our proposedRPO-IU-PCGI.

The superior performance of the RPO-IU-PCGI over theHP-IU-PCGImight be attributed to the following
reasons. First, the size of theminimum lumpof gray value in ghost images is proportional to the speckle size of

Figure 5. Imaging effects at different sampling rates: (a) ground truth; (b)RPO-IU-CGI reconstructing objects; (c)HP-IU-PCGI
reconstructing objects; (d)RPO-IU-PCGI reconstructing objects.
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sampling pattern. As a result, massive loss of the image details will happenwhen the speckle size is large.
Figure 7(a) shows a set ofHadamard patterns which are randomly selected. From space structure of the
Hadamard patterns, it is prone to appear concentrated together in bright or dark pixels, whichwill lead to so
many concentrated areas of the target informationwithout collecting for the experiment at lower sampling rate
(<25%). It is easy to see thatmost of them exhibit speckle patterns with large size, leading to degradation of
images quality. Second, the sampling effect of differentHadamard patterns are significantly different with each
other especially when speckle size is large. It results in large distinction in target features obtained by the bucket
detector each time. Therefore, it is difficult for the IU-net to extract the target’s features with the bucket detector
values obtained by theHadamard patterns at a very low sampling rate. In contrast, the random sampling
patterns do not facewith such challenges since their speckle size ismuch smaller and uniformly and randomly
distributed, as shown infigure 7(b).

3.3. Generalization
We further explore the generalization of our proposed RPO-IU-PCGI.We design the targets of Chinese
characters and English letters. The targets and background aremade of steel and stone, respectively. Although
the IU-net has been trained by using theMNIST handwritten dataset, it is clearly seen that it can be used to
reconstruct the images of Chinese characters and English letters without training, as shown infigure 8(a). The
PSNR and SSIMbased on these results in figure 8(a) at different sampling rates, have also been demonstrated in
figure 8(b). The target can be recovered verywell when theα is 6%, demonstrating that our scheme can be
generalized at a very low sampling rate. As the sampling rate decreases, it becomes difficult to recover these
complex targets, especially the Chinese characters. For English letters that have not been trained, at a sampling
rate of 5%, onemay still discriminate the targets.

We further explore the generalization of our proposedRPO-IU-PCGI for the targets with different
materials. Asmentioned earlier, the objects of the dataset for the IU-net training are composed of steel and

Figure 6.PSNR and SSIMof the results in the ranging by RPO-IU-PCGI andHP-IU-PCGIwith theα from1% to 6%.

Figure 7. (a)Hadamard patterns; (b)Randompatterns.
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stone. To verify the generalization of the network, wemake the digit and background aremade of steel and
wood, respectively, which have not been trained. The depolarization properties of wood is very high, and very
different with that of steel [46]. The top panel offigure 9 shows the images of the ground truth for comparison.
The results of RPO-IU-PCGI at differentα are shown infigure 9(a), where the targets can be recovered very
accurately. Even the targets aremade of untrainedmaterials, we can still take advantage of differences in their
depolarization properties to recover themusing our network. As long as the depolarization properties of the
target and the background are obviously different, our scheme can accurately restore the target at a very low
sampling rate.

In a practical situation, we cannot rule out the fact that the depolarization properties of the target and the
surrounding backgroundmay be very similar. Sowe have also explored the generalization of IU-net when the
depolarization properties of both the target and the background are similar. Figure 9(b) shows the results that
the digit and background aremade of stone andwood, respectively. Due to the similarity of the depolarization
properties [46], the target is un-distinguishable when the sampling rate is extremely low. Fortunately, it can be
seen that the recovery target can be clear at a sampling rate of 25%.

4. Conclusion

In this paper, we have introduced randompatterns into deep-learning based polarization computational ghost
imaging system to recover high-quality images at a low sample rate. The object was illuminatedwith the random
patterns. Amodified deep learning network is used to automatically learn themapping relationship between the
target and bucket detector values. The obtained datawas orthonormalized and inputted into the IU-net.
Comparedwith the results obtainedwithHadamard patterns, we demonstrated higher-quality images at a low
sample rate of 1.5% and superior generalization at a low sample rate of 6%. This is due to the superiority of the
randompatterns over theHadamard patterns for the intensive speckles.We have also demonstrated the
generalization of the designed RPO-IU-PCGI. For complex targets ormaterials that have not been trained, the
targets can be also accurately recovered at extremely low sampling rates. The proposedmethodmay promote the

Figure 8. (a)Network generalization test results at differentα; (b)The PSNR and SSIMof generalization test results at differentα.
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practical applications of polarization computational ghost imaging, such as target identification, biomedical,
military and so on.
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