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A B S T R A C T

Information embedded in ligand-binding residues (LBRs) of proteins is important for understanding protein
functions. How to accurately identify the potential ligand-binding residues is still a challenging problem,
especially only protein sequence is given. In this paper, we establish a new query-specific computational method,
named I-LBR, for the identification of LBRs without directly using the information of protein 3D structure. I-LBR
includes two modes, named as I-LBRGP and I-LBRLS, for the general-purpose and ligand-specific LBR identifi-
cation. For both modes, I-LBR first construct the specific training subset based on the query sequence in-
formation; then use support vector machine (SVM) algorithm to learn the LBR identification model; finally,
predict the probability of each residue in query protein belongs to the class of LBR. Experimental results on four
testing dataset demonstrate that I-LBRLS is the better choice against I-LBRGP, when the ligand type/types of the
query protein binds is/are known. Comparing to other state-of-the-art LBR identification methods, I-LBR can
achieve a better or comparable performance. The web-server of I-LBR and dataset used in this study are freely
available for academic use at https://jun-csbio.github.io/I-LBR.

1. Introduction

Protein in cells constantly interact to several small-molecule li-
gands. Statistics has shown that more than 58% of the 515,776 protein
chains solved in the Protein Data Bank (PDB) [1] interact one small-
molecule ligand at least. These interactions between proteins and li-
gands can give rise to or modulate various aspects of protein functions.
Previous researches [2,3] have shown that, in order to bind one ligand,
a small part of surface residues of protein always comprise one local
concave-shaped structure known as a ‘pocket’. Identifying the ligand-
binding residues (LBRs) of proteins is thus a crucial step in elucidating
their functions and designing new drugs to regulate these function.

A variety of computational methods have been proposed for the
identification of LBRs of proteins. Depending on the type of the input
protein data, these methods can be generally categorized into structure-
based and sequence-based methods. The structure-based methods is the
main direction of the research fields of LBRs identification in the early
stage. Generally, the structure-based methods can be further subdivided
into two classes of approaches. In the first class of approaches, e.g.,
ConCavity [4], LIGSITE [5], and SURFNET [6], the ligand-binding
pocket consists of LBRs is located by recognizing the concave-shaped
structure on the surface of the 3D structure of the query protein [7]. The

advantage of this class of approaches is that none of templates is re-
quired, but the false positive rate should be high, especially for the low-
resolution models generated by protein structure predictors, i.e.,
MODELLER [8], Rosetta [9], and I-TASSER [10]. The second class of
approaches, such as FINDSITE [11], FunFOLD [12], 3DLigandSite [13],
COFACTOR [14], COACH [15], ATPbind [16], and DELIA [17], is to
infer ligand-binding information from the know template proteins,
which have similar local and/or global structure to the query protein.
On average, the second class of approaches can achieve a good per-
formance of LBRs identification, especially for the query proteins which
have close homologous in the protein-ligand complex structure data-
bases. However, the good performance of the second class cannot be
maintained on these query proteins which have only distant-homo-
logous and/or no-homologous templates on the databases.

Unlike the structure-based methods, the sequence-based methods do
not require the 3D structure information of query protein [18]. Due to
the functions of LBRs are important in the biological processes, the
LBRs should be conserved in the evolutionary process [19]. Based on
the conservation property of LBR, the sequence-based methods can
achieve a comparable performance against the structure-based
methods, especially using the machine-learning algorithms, such as
support vector machine (SVM) [20]. To name a few, ConSurf [21],
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Rate4Site [22], NsitePred [23], S-SITE [15], and TargetS [18]. Al-
though the performance of the sequence-based methods is not superior
to that of the structure-based methods in general, they can give a more
reasonable LBRs for these query proteins which only have distant-
homologous or no-homologous template proteins in the existing pro-
tein-ligand binding databases.

In addition, depending on whether the ligand type is cared or not,
these existing LBR identification methods can be also grouped into
general-purpose and ligand-specific methods [16]. The general-purpose
methods, which predict LBRs regardless of the ligand types, dominated
the field of LBRs identification. Most of the structure-based methods are
the general-purpose methods, such as ConCavity [4], LIGSITE [5], and
SURFNET [6], FINDSITE [11], FunFOLD [12], 3DLigandSite [13],
COFACTOR [14], and COACH [15]. Some sequence-based methods are
also the general-purpose methods, including ConSurf [21] and Rate4-
Site [22]. However, different ligands tend to bind diverse types of re-
sidues with observable specificities due to the specific roles, sizes, and
distributions of protein-ligand interactions [24]. Hence, developing li-
gand-specific LBRs identification methods has attracted considerable
attention to gain much more accurate performance. Many ligand-spe-
cific methods have emerged recently, such as HemeBind [25] is de-
signed for identifying HEME-specific LBRs, FINDSITE-metal [26] is
extended from FINDSITE [11] to identify metal ion-specific LBRs, AT-
Pint [27], ATPsite [28], and ATPbind [16] are developed for predicting
the ATP-specific LBRs, NsitePred [23] and TargetS [18] are proposed to
locate the nucleotides-specific LBRs, and MetaDBSite [29], TargetDNA
[30], and DNAPred [31] are designed to predict DNA-specific LBRs.

Despite the progress made in the identification of LBRs, the per-
formance of the existing methods has, on average, not yet lived up to
expectations, especially for the sequence-based methods. Furthermore,
such methods which can both implement the general-purpose and li-
gand-specific LBRs identification are rare. In this study, to improve the
performance of the sequence-based methods, we report a new query-
specific computational method, called I-LBR, to identify the LBRs from
the sequence information of the query protein. The proposed I-LBR
contains two modes for the identification of LBRs, i.e., general-purpose
and ligand-specific modes, named as I-LBRGP and I-LBRLS. For both
modes of I-LBR, a template database, called TeD, is first pre-constructed
for all proteins in the BioLiP database [32] by collecting the residues
associated with the known ligands; secondly, three sequence-related
profiles, i.e., position-specific frequency matrix (PSFM), predicted sec-
ondary structure probability matrix (PSSPM), and predicted solvent
accessibility probability matrix (PSAPM), of query and template pro-
teins are generated; thirdly, based on these profiles, I-LBR generates the
query-specific training subset; fourthly, the SVM algorithm is employed
to train the query-specific identification model; finally, I-LBR can easily
obtain the probability of each residue in the query protein belongs to
the class of LBR. Experimental results on four testing datasets demon-
strate the effectiveness of the proposed I-LBR. The web-server of I-LBR
and dataset used in this study are freely available for academic use at
https://jun-csbio.github.io/I-LBR.

2. Materials and methods

To make the proposed I-LBR to be a useful LBR identification
method, we basically needs to follow "Chou's 5-steps rule” [33–36] to
go through the following five steps (see, e.g. Ref. [37],: (1) select or
construct a valid benchmark dataset to train and test the predictor; (2)
represent the samples with an effective formulation that can truly re-
flect their intrinsic correlation with the target to be predicted; (3) in-
troduce or develop a powerful algorithm to conduct the prediction; (4)
properly perform cross-validation tests to objectively evaluate the an-
ticipated prediction accuracy; (5) establish a user-friendly web-server
for the predictor that is accessible to the public.

2.1. Benchmark datasets

In this study, one general-purpose dataset, which is collected by
Yang et al. [15] and consists of 400 non-redundant ligand-binding
proteins, is employed to tune the parameters of our proposed method
(i.e., I-LBR) and named as TRAIN. Another one general-purpose dataset
(named as TEST) and three ligand-specific datasets (named as ATP-
TEST, GTP-TEST, and GDP-TEST) are utilized to testify the effectiveness
of general-purpose and ligand-specific binding residue identification of
the proposed I-LBR. The TEST dataset, which is used in COACH [15],
consists of 500 non-redundant proteins that harbor 814 ligands (410
natural ligands, 238 drug-like ligands and 164 metal ions). Noted that
none of proteins in TEST has a sequence identity > 30% to the proteins
in TRAIN [15]. The ATP-TEST includes 41 ATP-binding proteins, which
is derived from our previous work ATPbind [16] directly. In ATP-TEST,
only one protein (i.e., 5BURA) has a sequence identity > 30% (i.e.,
31.6%, calculated by NW-align which is a sequence alignment tool and
available at https://zhanglab.ccmb.med.umich.edu/NW-align) to the
proteins in TRAIN. The GDP-TEST and GTP-TEST contain 14 GDP-
binding and 7 GTP-binding proteins, respectively, which are collected
by Yu et al. [18]. None of proteins in GTP-TEST has a sequence iden-
tity > 30% to the proteins in TRAIN. In GDP-TEST, only one protein
(3SEAA) has a sequence identity > 30% (i.e., 36.8%) to the proteins in
TRAIN. Detailed information of the five datasets is shown in Table 1.

2.2. I-LBR

I-LBR is designed to identify query-specific ligand-binding residues
from protein sequence information, which contains five main steps (1)
template (i.e., protein with known LBRs): database preparation, (2)
sequence profile generation, (3) query-specific training subset con-
struction, (4) query-specific SVM-based model generation, and (5) li-
gand-binding residues prediction. In addition, I-LBR also proposes two
modes (i.e., general-purpose and ligand-specific, named as I-LBRGP and
I-LBRLS) to detect ligand-binding residues of proteins. The main dif-
ference between I-LBRGP and I-LBRLS is how to construct query-specific
training subset (see details in the last two paragraphs of Section 2.2.3).
Fig. 1 shows the flowchart of I-LBR. More details is described in the
following paragraphs.

2.2.1. Template database preparation
In this study, the template database (called TeD) is pre-calculated

for all proteins in the BioLiP database by collecting the residues asso-
ciated with the known ligands. Concretely, for each template protein,
we first count the number of ligands it binds. For each bond ligand of
each template protein, we create one database record, which includes
the information of the template protein sequence, ligand type, and
LBRs. That is, when one template protein binds n ligands, there are n
database records corresponding to this template protein.

2.2.2. Sequence profile generation
Starting from a query protein sequence with L residues, I-LBR first

Table 1
Details of five protein-ligand binding residue datasets used in this study.

Dataset Nprotein
a Nposi

b Nnega
c N/P ratiod

TRAIN 400 8045 122369 15.21
TEST 500 7687 135667 17.65
ATP-TEST 41 674 14159 21.01
GTP-TEST 7 89 1868 21.00
GDP-TEST 14 194 4180 21.55

a Nprotein: Number of proteins in the corresponding dataset.
b Nposi: Number of LBRs in the corresponding dataset.
c Nnega: Number of non-LBRs in the corresponding dataset.
d N/P ratio: Ratio = Nnega/Nposi.
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generates three different profiles: (1) position-specific frequency matrix
(PSFM), (2) predicted secondary structure probability matrix (PSSPM),
and (3) predicted solvent accessibility probability matrix (PSAPM). To
obtain PSFM of query protein, a matrix with size L✕20, PSI-BLAST [38]
is first employed to thread the query sequence through the non-re-
dundant NCBI sequence database [39] for constructing multiple se-
quence alignments. The PSFM is then calculated from the multiple se-
quence alignments (MSAs). To gain the PSSPM of query protein, a
probability matrix with size L✕3, PSIPRED [40] is used in this study
with its default settings. In PSSPM, each line includes the probabilities
of three general secondary structure classes, i.e., coil (C), helix (H), and
strand (E), of the corresponding residue. To achieve the PSAPM of
query protein, SANN developed by Joo et al. [41] is utilized. The
PSAPM, which is a probability matrix with size L✕3, contains the
probabilities of three solvent accessibility classes, i.e., buried, inter-
mediate, and expose, of each residue. Similarly, each template in TeD
contains three profiles, i.e., position-specific scoring matrix (PSSM),
PSSPM, and PSAPM. The PSSM, PSSPM, and PSAPM are also obtained
via PSI-BLAST [38], PSIPRED [40], and SANN [41], respectively.

2.2.3. Query-specific training subset construction
In order to construct the query-specific training subset for each

query protein, we want to search several homologous template proteins
from TeD. To detect homologous templates, inspired by S-SITE [15], the
query profiles, i.e., PSFMQ, PSSPMQ, and PSAPMQ, are compared with
the corresponding profiles, i.e., PSSMT , PSSPMT , and PSAPMT , of each
template in TeD using the Needleman-Wunsch dynamic programming
algorithm [42]. For the h-th database record of each template, the score
for aligning the i-th residue in the query to the j-th residue in the
template is calculated as
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= 0; the values of 1.8,
1.8, and 2.0 are empirically tuned on the TRAIN dataset; B Q T( , )i j is the
normalized BLOSUM62 [43] similarity score between the i-th residue of
query protein and the j-th residue of template protein. The value of
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where BM Q T( , )i j is the original value of the BLOSUM62 matrix [43]
corresponding to residue types of Qiand Tj. BMmax and BMmin are the
maximum and minimum values of the elements of the BLOSUM62
matrix, respectively. Overall, in Eq. (1), the first term accounts for
evolutionary conservation positions alignments, the second for the
secondary structure match, the third for the solvent accessibility match,
and the last term for evolutionary relation of residues in the LBRs
concerning the h-th database record of the template.

The match quality between the query protein and the h-th database
record of each template is calculated by
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the global and local alignment scores separately normalized by the
query sequence length (L) and the number of the aligned residue pairs
associated with the LBRs of the h-th database record of the template; Lali
is the number of the aligned residue pairs; alii

Q and alii
T means the

indexes of two residues, which form the i-th aligned pair, in the query
and template proteins; b

ali
T

i
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h is similar to that defined in Eq. (1); Lc is the
fraction of the LBRs of the h-th database record of the template that are
aligned to query sequence; the values of 0.4, 0.1, and 0.2 are also tuned
on the TRAIN dataset; JSD is an evolutionary conservation index de-
fined as the average Jensen–Shannon divergence score over the query
residues aligned the LBRs of the h-th database record of the template,
which is calculated from multiple sequence alignments [15]. Specifi-
cally, JSD is calculated as
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where JSDalii
Q represents the evolutionary conservation score of the

alii
Q-th residue of the query protein. Here, JSDalii

Q is calculated based on
multiple sequence alignment generated on the step of “sequence profile
generation”. The equation of calculating JSDalii
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Fig. 1. Flowchart of I-LBR for protein-ligand binding residue identification. The “Specific Ligand Type (s)” is an optional input information, which is only required by
the ligand-specific mode of I-LBR, i.e., I-LBRLS.
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where AA means the set of 20 common residue types, p aa( )alii
Q is the

occurring frequency of the residue type of aa in the i-th column of the
multiple sequence alignment, q aa( ) is the occurring frequency of the aa
residue type estimated on a large set of random sequences, c aa( )alii

Q =
(p aa( )alii

Q +q aa( ))/2. After the mq score of this record is calculated, if
the ligand type of this record is cared by user, the ligand-specific mode
of I-LBR, i.e., I-LBRLS, will increment the value of mq by one, but the
general-purpose mode of I-LBR will not. Here, all ligand types are cared
by the general-purpose mode of I-LBR, i.e., I-LBRGP.

All database records of the template proteins in TeD with a mq score
above a threshold (Tmq) are chosen to construct the query-specific
training subset. Note that, the value of Tmq is 0.5 in I-LBRGP and 1.5 in I-
LBRLS. If the number of the database records in the constructed training
subset is less than 20, the top 20 database records with the highest mq
score will be selected to construct the training subset. If the number of
the database records in the constructed training subset is more than
200, the top 200 database records with the highest mq score will be
selected to construct the training subset and the others will be removed.
It is noted that, in order to fairly evaluate the efficiency of I-LBR, none
of the proteins of all selected database records has a sequence iden-
tity > 30% to the query protein in this study.

2.2.4. Query-specific SVM-Based model generation
Based on the constructed query-specific training subset above, we

use the support vector machine (SVM) algorithm [44] to train the
computational model for identifying the ligand-binding residues (LBRs)
and non-ligand-binding residues (non-LBRs) of the query protein. Due
to there may exist two or more database records in the training subset
come from the same template protein, we first integrate the label in-
formation of all database records with the same protein to one protein
and make sure that each residue of each protein has only one label. For
each protein in the training subset, each element x of its PSSM is nor-
malized with the logistic function = +f x e( ) 1/(1 )x . Then, a sliding
window with size W is employed to extract the feature vector of each
residue based on the PSSM, PSSPM, and PSAPM of the corresponding
protein. More specifically, the feature vector of a residue is obtained by
concatenating the PSSM, PSSPM, and PSAPM scores of its neighboring
residues within the window centered at the residue. In this study we set
W = 17 based on our previous researches [45]. Therefore, the di-
mension number of the feature vector of each residue is

+ + × =(20 3 3) 17 442. Finally, we obtain a query-specific training
sample set Sqst , which consists of all LBRs and non-LBRs in the training
subset.

The identification of LBRs is a typical class imbalance learning
problem. As shown in Table 1, we can easily find that a severe class
imbalance phenomenon does exist among all datasets: the ratio of the
number of non-LBRs to that of LBRs is consistently larger than 15. Our
previous study [45] shows that directly using SVM to train the identi-
fication model does not yield satisfactory performance of LBR identi-
fication. In this study, we combine the random under-sampling (RUS)
and modified random over-sampling (MROS) methods to make the
number of LBR and non-LBR data to be balance.

Let =S S Sqst posi nega, Sposi be the positive sample (i.e., LBR) subset,
Snega be the negative sample (i.e., non-LBR) subset. We hope obtain a
new sample set =S S Sˆ ˆ ˆqst posi nega, where the sample number (i.e., Ŝposi )
of Ŝposi is equal to that (i.e., Ŝnega ) of Ŝnega. In order to achieve this
purpose, we employ RUS to randomly remove some negative samples to
generate Ŝnega and make sure that =S Sˆ /nega posi ( 1). Hence, the
MROS methods should be used to make the sample number of Sposi to be

Sposi . Due to directly copying the positive samples is not the best way
absolutely, the MROS method is proposed to relieve the negative effect
of the imbalance phenomenon. The MROS contains two steps which is
described as follows:

Step I: Three samples, denoted as xi, xj, and xk, are randomly se-
lected from Sposi.

Step II: According to the three randomly selected samples, an ad-
ditional positive sample can be synthesized:

+x x x x( )new i j k (6)

where is a random value ranging from 0 to 0.3. If <S Sˆposi posi ,
S S xˆ ˆ { }posi posi new .

Steps I and II are repeated until =S Sˆposi posi . In this study, we
have tested different values of and found that = 4 is a better choice
(see details in Section 3.1).

After the balanced training sample set Ŝqst obtained, we employ
LIBSVM software (version libsvm-3.18) [46], which is freely down-
loadable package from http://www.csie.ntu.edu.tw/~cjlin/libsvm/, to
implement the SVM algorithm to train the query-specific model for
identifying the LBRs of the query protein.

2.2.5. Ligand-binding residues prediction
After the query-specific SVM model obtained, we generate the query

sample set SQ from the query protein by using the similar procedures
described in the first paragraph of Section 2.2.4. In SQ, each sample
corresponds to one residue in the query protein. The probability (pQi) of
each residue to be LBR is gained easily, when the corresponding sample
is fed into the query-specific SVM model.

2.3. Evaluation indices

The performance of LBR identification is evaluated by five routinely
used indices, i.e., Recall (Rec), Specificity (Spe), Precision (Pre),
Accuracy (Acc), and the Mathew's Correlation Coefficient (MCC):

=
+

Rec TP
TP FN (7)

=
+

Spe TN
TN FP (8)

=
+

Pre TP
TP FP (9)

= +
+ + +

Acc TP TN
TP FN TN FP (10)

=
+ + + +

MCC TP TN FN FP
TP FN TP FP TN FN TN FP( ) ( ) ( ) ( ) (11)

where TN (true negative), TP (true positive), FN (false negative), and FP
(false positive) mean the numbers of true non-LBRs, true LBRs, false
non-LBRs, and false LBRs in the prediction, respectively. In addition,
the overall evaluation index AUC, which is the area under the Receiver
Operating Characteristic (ROC) curve, is employed to evaluate the
performance of LBR identification. Furthermore, the average (denoted
as AveM,A) of MCC and AUC is also computed to testify the LBR iden-
tification performance. It is noted that the values of TN, TP, FN, and FP
depend on a report-threshold Th in this study. If the probability (pQi) of
each residue to be LBR is larger than Th, the residue is predicted as LBR
by the proposed I-LBR. Therefore, how to objectively determine the
value of Th is a significant problem, especially in the situation of im-
balanced learning scenario.

In this study, in order to determine the values of the parameters of I-
LBR (including Th), we use the 10-fold cross-validation. Briefly, we
randomly divided the TRAIN dataset into 10 subsets of equal size,
where 9 subsets are employed to tune these parameters and the re-
maining subset is utilized as validation; for each combination of the
parameter values in the grid space, such practice continued until all the
10 subsets of the TRAIN dataset are traversed over; an overall AveM,A is
finally computed on the union of 10 validation results. The parameters
of I-LBR with the highest overall AveM,A are finally selected for identi-
fying LBRs from protein sequence.
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3. Experimental results and analysis

3.1. Tuning the value of under the general-purpose mode of I-LBR

In this section, the parameter of described in Section 2.2.4 is
empirically tuned for search an appropriate value for training the
query-specific SVM model under the general-purpose mode of I-LBR,
i.e., I-LBRGP. Concretely, we evaluate the performance variations by
gradually varying the value of from 1 to 9 with a step size of 1. For
each value of , the MCC, AUC, and AveM,A values are computed by
using 10-fold cross-validation described in Section 2.3 on the TRAIN
dataset with fixing other parameters of I-LBR.

Fig. 2 shows the performance variation curves of MCC, AUC, and
AveM,A versus under the general-purpose mode of I-LBR, i.e., I-LBRGP.
It is easily to find that the trends of MCC and AUC are completely
monotonous and opposite. Therefore, we choose the value of de-
pending on the values of AveM,A. Concretely, when 4, the overall
trend of the values of AveM,A tends to increase with the increment of
obvious enhancement. However, when > 4, the values of AveM,A tend
to decrease. It can be expected that the values of AveM,A will further
deteriorate with the increase in when > 9, due to the noise and
redundant information of positive samples will increase with the in-
crement of . In view of this, we will set = 4 in this study.

3.2. Performance comparison between the modes of general-purpose and
ligand-specific

In this section, we compare the performance of two modes of I-LBR,
i.e., I-LBRGP and I-LBRLS, on the TRAIN database over 10-fold cross-
validation. It is noted that only the types of the ligands bond to the
query proteins are used in the I-LBRLS. The overall values of Rec, Spe,
Acc, Pre, MCC, AUC, and AveM,A of I-LBRGP and I-LBRLS are shown in
Table 2.

From Table 2, we can find that I-LBRLS is superiors to I-LBRGP

concerning the Spe, Acc Pre, MCC, and AveM,A evaluation indexes.
Concretely, the Spe, Acc, Pre, MCC, and AveM,A values of I-LBRLS are
0.987, 0.960, 0.735, 0.610, and 0.743, which are 1.13%, 0.73%,

17.79%, 2.87%, and 0.41% higher than that of I-LBRGP, although I-
LBRLS has a lower Rec and AUC.

Fig. 3 demonstrates a head-to-head comparison of I-LBRLS and I-
LBRGP based on MCC. In Fig. 3, each circle means one protein in the
TRAIN dataset. Out of the 400 train proteins, there are 203 cases where
I-LBRLS has higher MCC than I-LBRGP. Interestingly, the types of the
ligands of the 203 proteins bond are frequently occurring in the TeD
database. Depending on these results, we can assume that I-LBRLS can
be first employed to identify the LBRs when the known ligand types of
the query protein are common in TeD. When the ligand types of the
query protein are unknown or uncommon, we suggest the users employ
the general-purpose mode of I-LBR, i.e., I-LBRGP.

3.3. Comparison with existing predictors

In this section, we will compare the proposed method, I-LBR, with
other existing LBRs identification methods to demonstrate its efficacy,
including 6 general-purpose methods, i.e., ConCavity [4], FINDSITE
[11], COFACTOR [47], S-SITE [15], TM-SITE [15], and COACH [15],
and 4 ligand-specific methods, i.e., NsitePred [23], TargetS [48],
ATPbind [16], and DELIA [49].

3.3.1. Performance comparisons on the TEST dataset
Table 3 lists the performance comparisons of the proposed I-LBR,

ConCavity [4], FINDSITE [11], COFACTOR [47], S-SITE [15], TM-SITE
[15], and COACH [15] on the TEST dataset. To achieve a relatively fair
comparison, the Rec, Pre, and MCC values of the structure-based control
methods, which are excerpted from the reference of COACH [15], are
evaluated on the structures predicted by I-TASSER [10,50].

By observing Table 3, it is easy to find that both modes of the

Fig. 2. The performance variation curves of MCC, AUC, and AveM,A versus
under the general-purpose mode of I-LBR, i.e., I-LBRGP.

Table 2
Performance comparison of I-LBRGP and I-LBRLS over 10-fold cross-validation
on the TRAIN dataset.

Mode of I-LBR Rec Spe Acc Pre MCC AUC AveM,A

I-LBRGP 0.613 0.976 0.953 0.624 0.593 0.887 0.740
I-LBRLS 0.541 0.987 0.960 0.735 0.610 0.876 0.743

Fig. 3. Head-to-head comparisons of MCC values between I-LBRGP and I-LBRLS

on the 400 proteins in TRAIN. The numbers in each panel represent the number
of points in the upper and lower triangles, respectively. PCC is the Pearson's
correlation coefficient between the MCCs of the two compared methods.

Table 3
Performance comparison of I-LBR and other existing methods on the TEST
dataset.

Methods Rec Pre MCC

ConCavitya 0.510 0.230 0.260
FINDSITEa 0.490 0.440 0.420
COFACTORa 0.390 0.560 0.420
TM-SITEa 0.490 0.570 0.480
COACHa 0.630 0.540 0.540
S-SITEa 0.580 0.450 0.450
I-LBRGP 0.590 0.524 0.529
I-LBRLS 0.575 0.561 0.543

a Data excerpted from the reference [15].
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proposed I-LBR can obtain Pre> 0.52 and MCC> 0.52 on the TEST
dataset. The MCC value for I-LBRLS is 0.543, with Pre 0.561 and Rec
0.575, respectively. The MCC and Pre values of I-LBRLS are higher than
that of I-LBRGS, although I-LBRLS has a lower Rec. However, due to the
listed control methods are all for general-purpose LBR identification, it
is fair to use I-LBRGP to compare the ligand-binding residues identifi-
cation performance between I-LBR and them. Concretely, the Rec, Pre
and MCC values of I-LBRGP are separately 1.72%, 16.44%, and 17.56%
higher than that of S-SITE, which is the only sequence-based control
method. The Rec and MCC values of I-LBRGP are 15.69% and 103.46%
higher than ConCavity, 20.41% and 25.95% higher than FINDSITE,
51.28% and 25.95% higher than COFACTOR, and 20.41% and 10.21%
higher than TM-SITE, respectively. Comparing to the best control
method COACH, the Rec, Pre, and MCC values of I-LBRGP are 6.35%,
2.96%, and 2.04% lower. However, the ligand-specific mode of I-LBR,
i.e., I-LBRLS, could obtain the higher Pre and MCC than COACH.

3.3.2. Performance comparisons on the ATP-TEST dataset
To further testify the performance of I-LBR, Table 4 summarizes the

comparisons between the I-LBRLS and other four state-of-the-art ligand-
specific LBR identification methods, i.e., two sequence-based methods
(NsitePred [23] and TargetS [18]) and two structure-based methods
(DELIA [17] and ATPbind [16]), on the ATP-TEST dataset.

By visiting Table 4, we can observe that the I-LBRLS is superior to
the two sequence-based methods, i.e., NsitePred [23] and TargetS [18],
concerning the three overall evaluation indexes, i.e., MCC, AUC, and
AveM,A. The Pre, MCC, AUC, and AveM,A of I-LBRLS are 0.763, 0.583,
0.886, and 0.734, which are 55.08%, 27.85%, 3.99%, and 12.23%
higher than NsitePred and 10.74%, 0.52%, 1.61%, and 1.10% higher
than TargetS, respectively, although I-LBRLS has a slightly lower Rec
than TargetS. However, out of the seven evaluation indexes, there are
only two indexes, i.e., Spe and Pre, where I-LBRLS are higher than the
two structure-based methods, i.e., DELIA [17] and ATPbind [16], al-
though their inputted protein structure data are predicted by MODEL-
LER [8] and I-TASSER [10], respectively. The main reason is that most
of the predicted structures used by DELIA and ATPbind are accurate in
fold-level (TM-score > 0.5 [51]). Taking ATPbind as an example, out of
the 41 testing proteins in the ATP-TEST dataset, there are 36 cases can
be modeled by I-TASSER with a correct fold [16]. However, on the
testing protein 5F1BC in ATP-TEST, whose I-TASSER-generated struc-
ture only has TM-score = 0.262, the MCC value of ATPbind is 0.183,
with Rec = 0.231, Spe = 96.49, Acc = 0.938, and Pre = 0.200, while
the MCC value of I-LBRLS is 0.386, with Rec = 0.154, Spe = 1.00,
Acc = 0.969, and Pre = 1.00, respectively. Hence, we suggest that the
I-LBRLS can be considered to use to identify the ATP-specific binding
residues, when the query protein has no high-resolution structure.

3.3.3. Performance comparisons on the GTP-TEST dataset
Table 5 lists the performance comparisons of I-LBRLS, NsitePred

[23], and TargetS [18] on the GTP-TEST. The MCC, AUC, and AveM,A of
I-LBRLS are 0.643, 0.955, and 0.799, which are 4.21%, 11.70%, and
8.56% higher than that of TargetS, respectively. Comparing to Nsi-
tePred, the I-LBRLS achieve the higher values of the four evaluation
indexes, i.e., Rec, Spe, Acc, and MCC. Since the GTP-specific and
structure-based LBR method is rare, we have not compare the perfor-
mance between I-LBRLS with them.

3.3.4. Performance comparisons on the GDP-TEST dataset
Table 6 demonstrates the performance comparisons of I-LBRLS,

NsitePred [23], and TargetS [18] on the GDP-TEST. It is easy to find
that the proposed I-LBRLS outperforms the two control methods, i.e.,
NsitePred [23], and TargetS [18]. Concretely, the MCC value of I-LBRLS

is 0.617, which is 12.18% higher than that of TargetS and 15.11%
higher than that of NsitePred. In addition, the AUC and AveM,A of I-
LBRLS are 0.912 and 0.765, which are 1.79% and 5.81% higher than
that of TargetS, respectively. Due to the GDP-specific and structure-
based LBR method cannot be found easily, we have not compare the
performance between I-LBRLS with them.

4. Conclusions

In this study, we report a new query-specific computational method,
I-LBR, to identify the ligand-binding residues (LBRs) from protein se-
quence. I-LBR contains two modes, i.e., general-purpose and ligand-
specific, named as I-LBRGP and I-LBRLS. For both modes of I-LBR, a
template database, called TeD, is first pre-constructed; secondly, three
sequence-related profiles, i.e., PSFM, PSSPM, and PSAPM, of query and
template proteins are generated; then, based on these profiles, I-LBR
generates the query-specific training subset; finally, the SVM algorithm
is employed to train the query-specific identification model for ob-
taining the probability of each residue in the query protein belongs to
the class of LBR. Our experimental results demonstrate that I-LBR can
achieve a better or comparable performance against the state-of-the-art
LBR identification methods. When the ligand type/types of the query
protein binds is/are known, the experimental results suggest the user
should select the ligand-specific mode of I-LBR, i.e., I-LBRLS. In the
future, we plan to further improve the performance of I-LBR mainly in
three aspects. The first is that collecting more available ligand-binding
proteins to increase the capacity of the template database, i.e., TeD. The
second is that the protein-level features, such as PseAAC [52–55],
generated by two powerful web-servers called ‘Pse-in-One’ [56,57] and

Table 4
Performance comparison of I-LBRLS and other existing ATP-specific methods on
the ATP-TEST dataset.

Methods Rec Spe Acc Pre MCC AUC AveM,A

NsitePred a 0.467 0.977 0.954 0.492 0.456 0.852 0.654
TargetS b 0.516 0.989 0.967 0.689 0.580 0.872 0.726
DELIA b 0.506 N/A N/A 0.730 0.593 0.901 0.747
ATPbind a 0.623 0.989 0.972 0.720 0.656 0.905 0.781
I-LBRLS c 0.467 0.993 0.969 0.763 0.583 0.886 0.734

‘N/A’ means that the corresponding value is not provided.
a Data excerpted from the reference [16]; the results of ATPbind is obtained

based on the protein structure predicted by I-TASSER [10].
b Data excerpted from the reference [17]; the results of DELIA is obtained

based on the protein structure predicted by MODELLER [8].
c I-LBRLS only care the ligand type of ATP.

Table 5
Performance comparison of I-LBRLS, NsitePred, and TargetS on the GTP-TEST
dataset.

Methods Rec Spe Acc Pre MCC AUC AveM,A

NsitePred a 0.584 0.957 0.940 N/A 0.448 N/A N/A
TargetS a 0.573 0.988 0.969 N/A 0.617 0.855 0.736
I-LBRLS b 0.640 0.986 0.970 0.679 0.643 0.955 0.799

‘N/A’ means that the corresponding value is not provided.
a Data excerpted from the reference [18].
b I-LBRLS only care the ligand type of GTP.

Table 6
Performance comparison of I-LBRLS, NsitePred, and TargetS on the GDP-TEST
dataset.

Methods Rec Spe Acc Pre MCC AUC AveM,A

NsitePred a 0.557 0.979 0.961 N/A 0.536 N/A N/A
TargetS a 0.562 0.981 0.962 N/A 0.550 0.896 0.723
I-LBRLS b 0.572 0.989 0.970 0.698 0.617 0.912 0.765

‘N/A’ means that the corresponding value is not provided.
a Data excerpted from the reference [18].
b I-LBRLS only care the ligand type of GDP.
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BioSeq-Analysis [58] should be carefully employed in the model of I-
LBR. The third is that the SVM algorithm used in this study should be
replaced by the deep convolution neural network algorithm [59,60],
whose effectiveness has been verify in DELIA [17], to enhance the
ability of learning knowledge. In addition, we will use the graphic ap-
proaches [61,62] to study biological and medical systems to further
provide an intuitive vision and useful insights for helping analyze
complicated relations.
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